設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且
(1)若過三點的圓恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分) 如圖,已知拋物線與坐標軸分別交于A、B、C三點,過坐標原點O的直線與拋物線交于M、N兩點.分別過點C、D作平行于軸的直線、.(1)求拋物線對應(yīng)的二次函數(shù)的解析式;(2)求證:以O(shè)N為直徑的圓與直線相切;(3)求線段MN的長(用表示),并證明M、N兩點到直線的距離之和等于線段MN的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
直線與橢圓交于,兩點,已知,,若且橢圓的離心率,又橢圓經(jīng)過點,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線,點關(guān)于軸的對稱點為,直線過點交拋物線于兩點.
(1)證明:直線的斜率互為相反數(shù);
(2)求面積的最小值;
(3)當點的坐標為,且.根據(jù)(1)(2)推測并回答下列問題(不必說明理由):①直線的斜率是否互為相反數(shù)? ②面積的最小值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分) 設(shè)拋物線C1:x2=4y的焦點為F,曲線C2與C1關(guān)于原點對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點P(異于原點),過點P作C1的兩條切線PA,PB,切點A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項?若存在,求出點P的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,曲線C1是以原點O為中心,F(xiàn)1、F2為焦點的橢圓的一部分,曲線C2是以原點O為頂點,F(xiàn)2為焦點的拋物線的一部分,是曲線C1和C2的交點.
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點,H為BE中點,問是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在圓上任取一點,過點作軸的垂線段,為垂足.當點在圓上運動時,線段的中點形成軌跡.
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知離心率為的橢圓上的點到
左焦點的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點在軸上,且使得為的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O(shè)為頂點、為焦點的拋物線的一部分,A是曲線和的交點且
為鈍角.
(1)求曲線和的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com