【題目】橢圓的右頂點(diǎn)和上頂點(diǎn)分別為,斜率為的直線與橢圓交于兩點(diǎn)(點(diǎn)在第一象限).

(Ⅰ)求證:直線的斜率之和為定值;

(Ⅱ)求四邊形面積的取值范圍.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】

()設(shè)直線方程為:代入并整理得:,利用韋達(dá)定理與斜率公式可得而,化簡即可得結(jié)果;()設(shè)的左頂點(diǎn)和下頂點(diǎn)分別為、,則直線、為互相平行的直線,所以、兩點(diǎn)到直線的距離等于兩平行線、間的距離.,利用弦長公式以及三角形面積公式可得從而可得結(jié)果.

(Ⅰ)設(shè)直線方程為:代入橢圓并整理得:

設(shè),則.

從而

所以直線 、的斜率之和為定值0.

(Ⅱ)設(shè)的左頂點(diǎn)和下頂點(diǎn)分別為、,則直線、為互相平行的直線,所以兩點(diǎn)到直線的距離等于兩平行線、間的距離.

,又點(diǎn)在第一象限,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幻彩摩天輪位于中山市西區(qū)興中廣場C4層高的建筑之上,與中山市第一家四星級酒店——富華酒店隔河相望,其外觀是參考世界最高的摩天輪新加坡飛行者的設(shè)計,輪體上有36個吊艙,共可同時承載288人從高空俯瞰岐江一河兩岸的美景幻彩摩天輪直徑為83m,每20min轉(zhuǎn)一圈,最高點(diǎn)離地108m,摩天輪上的點(diǎn)P的起始位置在最低點(diǎn)處已知在時刻tmin)時P距離地面的高度,(其中),

1)求的函數(shù)解析式

2)當(dāng)離地面m以上時,可以俯瞰富華酒店頂樓,求轉(zhuǎn)一圈中有多少時間可以俯瞰富華酒店頂樓?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,=90°,且=1,=2旋轉(zhuǎn)至,使點(diǎn)與點(diǎn)之間的距離=

1)求證:平面;

2)求二面角的大;

3)求異面直線所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)||,實(shí)數(shù)m,n滿足0mn,且f(m)f(n),若f(x)[m2,n]上的最大值為2,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動有興趣的占,而男生有10人表示對冰球運(yùn)動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

55

合計

(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)若,求函數(shù)上的最小值;

2)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不交于同一點(diǎn)的三條直線:4x+y-4=0,:mx+y=0,:x-my-4=0.

(1)當(dāng)這三條直線不能圍成三角形時,求實(shí)數(shù)m的值;

(2)當(dāng)都垂直時,求兩垂足間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某糕點(diǎn)房推出一類新品蛋糕,該蛋糕的成本價為4元,售價為8元.受保質(zhì)期的影響,當(dāng)天沒有銷售完的部分只能銷毀.經(jīng)過長期的調(diào)研,統(tǒng)計了一下該新品的日需求量.現(xiàn)將近期一個月(30天)的需求量展示如下:

日需求量x

20

30

40

50

天數(shù)

5

10

10

5

(1)從這30天中任取兩天,求兩天的日需求量均為40個的概率.

(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量的期望.

(3)根據(jù)(2)中的分布列求得當(dāng)該糕點(diǎn)房一天制作35個該類蛋糕時,對應(yīng)的利潤的期望值為;現(xiàn)有員工建議擴(kuò)大生產(chǎn)一天45個,求利用利潤的期望值判斷此建議該不該被采納.

查看答案和解析>>

同步練習(xí)冊答案