(本題滿分12分)已知棱長為的正方體中,M,N分別是棱CD,AD的中點。(1)求證:四邊形是梯形;(2)求證:
見解析。
【解析】
試題分析:(1)結(jié)合三角形的中位線的性質(zhì)得到MN=AC,以及MN∥A1C1得到證明。
(2)由(1)可知MN∥A1C1,又∵ND∥A1D1,根據(jù)等角定理得到結(jié)論。
證明:(1)連接AC,在△ACD中,
∵M,N分別是棱CD,AD的中點,
∴MN是三角形的中位線,
∴MN∥AC,MN=AC。由正方體的性質(zhì)得:AC∥A1C1,AC=A1C1。
∴MN∥A1C1,且MN= A1C1,即MN≠A1C1,∴四邊形MN A1C1是梯形。
(2)由(1)可知MN∥A1C1,又∵ND∥A1D1,
∴∠DNM與∠D1A1C1相等或互補,而∠DNM與∠D1A1C1均是直角三角形的銳角,
∴∠DNM=∠D1A1C1
考點:本題主要考查了空間中確定平面的方法和等角定理的運用。
點評:解決該試題的關(guān)鍵是能通過正方體的性質(zhì)得到梯形的形狀的判定,以及運用等角定理來得到角的相等的證明。
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯(lián)考數(shù)學(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、、.,且.(1)求的大小;(2)若.求.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長軸長是短軸長的倍,,是它的左,右焦點.
(1)若,且,,求、的坐標;
(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線(是切點),且使,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年遼寧省高二上學期10月月考理科數(shù)學卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com