已知數(shù)列{an}等差數(shù)列,{bn}為等比數(shù)列,且滿足:a1000+a1012=π,b1b14=-2,則數(shù)學公式=________.


分析:等差數(shù)列{an}中,由性質(zhì)am+an=ap+aq(其中m+n=p+q),得a1+a2011=a1000+a1012,等比數(shù)列{bn}中,由性質(zhì)bmbn=bpbqm+n=p+q,得b7b8=b1b14,代入計算可得.
解答:在等差數(shù)列{an}中,a1+a2011=a1000+a1012=π,等比數(shù)列{bn}中,b7b8=b1b14=-2,
===
故答案為:
點評:本題考查了等差,等比數(shù)列性質(zhì)的應用;在等差數(shù)列{an}中,有am+an=ap+aq,等比數(shù)列{bn}中,有bmbn=bpbq(其中m+n=p+q),這兩個公式在解題時應用很方便.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{bn}為首項為1,公差為1的等差數(shù)列
(1)求a1及an,bn
(2)記cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{bn}滿足b1=2,點P(bn,bn+1)(n∈N*)在直線y=x+2上,
(1)求數(shù)列{an},{bn}的通項公式;
(2)設cn=anbn(n∈N*),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=2an,且a3+2是a2,a4的等差中項.
①求數(shù)列{an}的通項公式;
②若bn=anlog
12
an
,Sn=b1+b2+b3+…bn,求使Sn+n•2n+1>50成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,前n項和sn滿足sn+1-sn=2n+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式及前n項和sn;
(Ⅱ)若S1、t(S3+S4)(t>0)的等差中項不大于它們的等比中項,求t的值.

查看答案和解析>>

同步練習冊答案