(2013•懷化二模)如圖1,小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1,再把正方形A1B1C1D1的各邊延長(zhǎng)一倍得到正方形A2B2C2D2(如圖2),如此進(jìn)行下去,正方形AnBnCnDn的面積為
5n
5n
.(用含有n的式子表示,n為正整數(shù))
分析:根據(jù)三角形的面積公式,知每一次延長(zhǎng)一倍后,得到的一個(gè)直角三角形的面積和延長(zhǎng)前的正方形的面積相等,即每一次延長(zhǎng)一倍后,得到的圖形是延長(zhǎng)前的正方形的面積的5倍,從而解答.
解答:解:如圖1,已知小正方形ABCD的面積為1,則把它的各邊延長(zhǎng)一倍后,△AA1B1的面積是1,
新正方形A1B1C1D1的面積是5,
從而正方形A2B2C2D2的面積為5×5=25,

正方形AnBnCnDn的面積為5n
故答案為:5n
點(diǎn)評(píng):此題考查了正方形的性質(zhì)和三角形的面積公式,能夠從圖形中發(fā)現(xiàn)規(guī)律,此題屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)求異面直線AB與CD所成角的余弦;
(Ⅲ)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)如圖所示,四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的正方形,PA⊥面ABCD,PA=2,過點(diǎn)A作AE⊥PB,AF⊥PC,連接EF.
(1)求證:PC⊥面AEF;
(2)若面AEF交側(cè)棱PD于點(diǎn)G(圖中未標(biāo)出點(diǎn)G),求多面體P-AEFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)實(shí)數(shù)a的值由如圖程序框圖算出,則二項(xiàng)式(
x
-
a
x
)9
展開式的常數(shù)項(xiàng)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為
3
2
的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個(gè)命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
k
2
,0)
對(duì)稱;⑤函數(shù)f(m)=3
3
時(shí)AM過橢圓的右焦點(diǎn).其中所有的真命題是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案