3.已知集合A={x|(x-1)(3-x)<0},B={x|-2≤x≤2},則A∩B=( 。
A.[-2,1)B.(1,2]C.[-2,-1)D.(-1,2]

分析 化簡集合A,根據(jù)交集的定義寫出A∩B即可.

解答 解:集合A={x|(x-1)(3-x)<0}
={x|(x-1)(x-3)>0}
={x|<1或x>3},
B={x|-2≤x≤2},
則A∩B={x|-2≤x<1}=[-2,1).
故選:A.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若$sinθ+cosθ=\frac{17}{13},θ∈(0,\frac{π}{4})$,則tanθ=$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.m,n是空間兩條不同直線,α,β是兩個不同平面,下面有四個命題:
①m⊥α,n∥β,α∥β⇒m⊥n
②m⊥n,α∥β,m⊥α⇒n∥β
③m⊥n,α∥β,m∥α⇒n⊥β
④m⊥α,m∥n,α∥β⇒n⊥β
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:“曲線C1=$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{2m+8}$=1表示焦點在x軸上的橢圓”,命題q:“曲線C2:$\frac{{x}^{2}}{m-t}+\frac{{y}^{2}}{m-t-1}=1$表示雙曲線”.
(1)若命題p是真命題,求m的取值范圍;
(2)若p是q的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow a$=(2sinα,1),$\overrightarrow b$=(cosα,1),α∈(0,$\frac{π}{4}$).
(1)若$\overrightarrow a$∥$\overrightarrow b$,求tanα的值;
(2)若$\overrightarrow a$•$\overrightarrow b$=$\frac{9}{5}$,求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為推行“新課堂”教學(xué)法,某地理老師分別用傳統(tǒng)方法和“新課堂”兩種不同的教學(xué)方法,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù)[50,59)[60,69)[70,79)[80,89)[90,100)
甲班頻數(shù)56441
乙班頻數(shù)1365
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計
成績優(yōu)良
成績不優(yōu)良
總計
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$,(n=a+b+c+d)
臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
(2)先從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.我國南北朝時代的數(shù)學(xué)家祖暅提出體積的計算原理(組暅原理):“冪勢既同,則積不容異”.“勢”即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處裁得兩幾何體的裁面積恒等,那么這兩個幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標(biāo)系中,圖1是一個形狀不規(guī)則的封閉圖形,圖2是一個矩形,且當(dāng)實數(shù)t取[0,4]上的任意值時,直線y=t被圖1和圖2所截得的線段始終相等,則圖1的面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.一次考試中,5名學(xué)生的數(shù)學(xué)、物理成績?nèi)缦拢?br />
學(xué)生A1A2A3A4A5
數(shù)學(xué)x(分)8991939597
物理y(分)8789899293
求y關(guān)于x的線性回歸方程.
附:回歸直線的斜率和截距的最小二乘估計公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA、PB,切點為A、B.
(1)若點P的坐標(biāo)為(0,0),求∠APB;
(2)若點P的坐標(biāo)為(2,1),過P作直線與圓M交于C、D兩點,當(dāng)$CD=\sqrt{2}$時,求直線CD的方程;
(3)經(jīng)過A、P、M三點的圓是否經(jīng)過異于點M的定點,若經(jīng)過,請求出此定點的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案