【題目】集合A={﹣1,0},B={0,1},C={1,2},則(A∩B)∪C等于( )
A.
B.{1}
C.{0,1,2}
D.{﹣1,0,1,2}
【答案】C
【解析】解:(A∩B)∪C
=({﹣1,0}∩{0,1})∪{1,2}
={0}∪{1,2}={0,1,2}
故選C
【考點(diǎn)精析】利用交、并、補(bǔ)集的混合運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c,d都是實(shí)數(shù),且a2+b2=1,c2+d2=4, 求證:|ac+bd|≤2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},則(UA)∩B等于( )
A.[﹣1,0)
B.(0,5]
C.[﹣1,0]
D.[0,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是奇函數(shù):當(dāng)x>0時(shí),f(x)=x(1﹣x);則當(dāng)x<0時(shí),f(x)=( )
A.f(x)=﹣x(1﹣x)
B.f(x)=x(1+x)
C.f(x)=﹣x(1+x)
D.f(x)=x(1﹣x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={﹣1,0,1,2},B={x|log2(x+1)>0},則A∩B=( )
A.{﹣1,0}
B.{1,2}
C.{0,2}
D.{﹣1,1,2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a=log20.3,b=20.3 , c=0.30.2 , 則a,b,c三者的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.b>c>a
D.c>b>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題:“若(a﹣1)(b﹣1)(c﹣1)<0,則a,b,c中至少有一個(gè)小于1”時(shí),下列假設(shè)中正確的是( )
A.假設(shè)a,b,c中至多有一個(gè)大于1
B.假設(shè)a,b,c中至多有兩個(gè)小于1
C.假設(shè)a,b,c都大于1
D.假設(shè)a,b,c都不小于1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|(x+1)(x﹣2)≥0},B={x|log3(2﹣x)≤1},則A∩(RB)=( )
A.
B.{x|x≤﹣1,x>2}
C.{x|x<﹣1}
D.{x|x<﹣1,x≥2}
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com