0≤≤2π時,曲線由下面方程給出,求函數(shù)y=f(x)的最大值與最小值.

答案:
解析:

  

  

  當(dāng)時,

  當(dāng)時,,函數(shù)是增函數(shù).

  當(dāng)0<x<1時,

  當(dāng)時,,當(dāng)時,

  處取得極大值.

  當(dāng)時,是增函數(shù).

  當(dāng)時,,函數(shù)是減函數(shù),故也是最大值,又,

  的最小值為

  最大值為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們把由半橢圓
x2
a2
+
y2
b2
=1
(x≥0)與半橢圓
y2
b2
+
x2
c2
=1
(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,M是線段A1A2的中點.
(1)若△F0F1F2是邊長為1的等邊三角形,求該“果圓”的方程;
(2)設(shè)P是“果圓”的半橢圓
y2
b2
+
x2
c2
=1
(x≤0)上任意一點.求證:當(dāng)|PM|取得最小值時,P在點B1,B2或A1處;
(3)若P是“果圓”上任意一點,求|PM|取得最小值時點P的橫坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的圖象的最高點D的坐標為(2,
2
)
,由最高點運動到相鄰的最低點F時,曲線與x軸相交于點E(6,0).
(1)求A、ω、φ的值;
(2)求函數(shù)y=g(x),使其圖象與y=f(x)圖象關(guān)于直線x=8對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當(dāng)m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)(文)(1)已知動點P(x,y)到點F(0,1)與到直線y=-1的距離相等,求點P的軌跡L的方程;
(2)若正方形ABCD的三個頂點A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲線L上,設(shè)BC的斜率為k,l=|BC|,求l關(guān)于k的函數(shù)解析式l=f(k);
(3)由(2),求當(dāng)k=2時正方形ABCD的頂點D的坐標.

查看答案和解析>>

同步練習(xí)冊答案