已知函數(shù)f(x)=log2(2-x-1)
(Ⅰ)判斷f(x)的奇偶性和單調(diào)性.
(Ⅱ)若f(x)<0,求x的范圍.
分析:(Ⅰ)由2-x-1>0,可得函數(shù)的定義域?yàn)椋?∞,0),不關(guān)于原點(diǎn)對(duì)稱,可得f(x)為非奇非偶函數(shù).再根據(jù)函數(shù)t=2-x-1在定義域(-∞,0)上是減函數(shù),
y=log2t,根據(jù)復(fù)合函數(shù)的單調(diào)性,可得f(x)的單調(diào)性.
(Ⅱ)若f(x)<0,根據(jù) f(-1)=0,且函數(shù)f(x)=log2(2-x-1)在定義域(-∞,0)上是減函數(shù),可得x>-1,再結(jié)合函數(shù)的定義域,確定x的范圍.
解答:解:(Ⅰ)由2-x-1>0,可得x<0,故函數(shù)的定義域?yàn)椋?∞,0),不關(guān)于原點(diǎn)對(duì)稱,故f(x)為非奇非偶函數(shù).
由于函數(shù)t=2-x-1=
1
2x
-1在定義域(-∞,0)上是減函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性,
函數(shù)f(x)=log2(2-x-1)在 定義域(-∞,0)上是減函數(shù).
(Ⅱ)若f(x)<0,∵f(-1)=log2(2-1)=0,函數(shù)f(x)=log2(2-x-1)在定義域(-∞,0)上是減函數(shù),∴x>-1.
再結(jié)合函數(shù)的定義域?yàn)椋?∞,0),可得所求的x的范圍為(-1,0).
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性、單調(diào)性的判斷和正明,利用單調(diào)性解不等式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案