設(shè)數(shù)學(xué)公式,則f(1)+f(2)+…+f(35)的值為________.

解:∵
x≠18時(shí),f(x)+f(36-x)=+=2
∴f(1)+f(2)+…+f(35)
=[f(1)+f(35)]+[f(2)+f(34)]+…+[f(17)+f(19)]+f(18)
=17×2-6
=28
故答案為28
分析:根據(jù)首尾兩項(xiàng)的函數(shù)值所對(duì)應(yīng)的自變量之和都等于36,故可考查f(x)+f(36-x)的值然后再將f(1)+f(2)+…+f(35)首尾依次結(jié)合即可得解.
點(diǎn)評(píng):本題主要考查了函數(shù)的求值,屬常考題,較難.解題的關(guān)鍵是根據(jù)所求得出f(x)+f(36-x)=2這一隱含結(jié)論!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锽,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍然是B,那么稱函數(shù)x=g(t)是函數(shù)y=f(x)的一個(gè)等值域變換.
有下列說法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,則x=g(t)不是f(x)的一個(gè)等值域變換;
②f(x)=|x|(x∈R),x=log3(t2+1),(t∈R),則x=g(t)是f(x)的一個(gè)等值域變換;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,則x=g(t)是f(x)的一個(gè)等值域變換;
④設(shè)f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一個(gè)等值域變換,且函數(shù)f(g(t))的定義域?yàn)镽,則m的取值范圍是m≤-2.
在上述說法中,正確說法的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f (x)=loga|xb|在(-∞,0)上遞增,則f (a+1)與f (b+2)的大小關(guān)系是(    )

        A.f(a+1)=f (b+2)                                               B.f (a+1)>f (b+2)  

        C.f(a+1)<f (b+2)                                               D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)偶函數(shù)f (x)=loga|xb|在(-∞,0)上遞增,則f (a+1)與f (b+2)的大小關(guān)系是(    )

         A.f(a+1)=f (b+2)                             B.f (a+1)>f (b+2)  

         C.f(a+1)<f (b+2)                             D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)學(xué)公式,則f(1)+f(2)+…+f(n)+f1(1)+f2(1)+…+fn(1)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年內(nèi)蒙古包頭33中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè),則f(1)+f(2)+…+f(n)+f1(1)+f2(1)+…+fn(1)=   

查看答案和解析>>

同步練習(xí)冊(cè)答案