8.5名學(xué)生進(jìn)行知識(shí)競賽,筆試結(jié)束后,甲、乙兩名參賽者去詢問成績,回答者對甲說:“你們5人的成績互不相同,很遺憾,你的成績不是最好的”;對乙說:“你不是最后一名”.根據(jù)以上信息,這5個(gè)人的筆試名次的所有可能的種數(shù)是( 。
A.54B.72C.78D.96

分析 甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有3種情況;再排甲,也有3種情況;余下的問題是三個(gè)元素在三個(gè)位置全排列,根據(jù)分步計(jì)數(shù)原理得到結(jié)果.

解答 解:由題意,甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有3種情況;
再排甲,也有3種情況;
余下3人有A33種排法.
故共有3•3•A33=54種不同的情況.
故選:A.

點(diǎn)評 本題主要考查排列、組合與簡單的計(jì)數(shù)問題,解決此類問題的關(guān)鍵是弄清完成一件事,是分類完成還是分步完成,是有順序還是沒有順序,像這種特殊元素與特殊位置的要優(yōu)先考慮.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=-4x3+3x的單調(diào)遞增區(qū)間是$[{-\frac{1}{2},\frac{1}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)的圖象如圖所示,則該函數(shù)的定義域、值域分別是( 。
A.(-3,3),(-2,2)B.[-2,2],[-3,3]C.[-3,3],[-2,2]D.(-2,2),(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(0,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
溫馨提示:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=68.26%,P(μ-2σ<X<μ+2σ)=95.44%
A.7614B.6587C.6359D.3413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為$\overline z=a-bi(a,b∈R)$,已知z=2+i,則$\overline{z^2}$=3-4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.圖中的兩條曲線分別表示某理想狀態(tài)下捕食者和被捕食者數(shù)量隨時(shí)間的變化規(guī)律.對捕食者和被捕食者數(shù)量之間的關(guān)系描述正確的是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,設(shè)A(x1,y1),B(x2,y2).定義:${d_α}(A,B)={({|{{x_1}-{x_2}}|^α}+{|{{y_1}-{y_2}}|^α})^{\frac{1}{α}}}$,其中α∈R+(R+表示正實(shí)數(shù)).
(Ⅰ)設(shè)A(1,1),B(2,3),求d1(A,B)和d2(A,B)的值;
(Ⅱ) 求證:對平面中任意兩點(diǎn)A和B都有${d_2}(A,B)≤{d_1}(A,B)≤\sqrt{2}{d_2}(A,B)$;
(Ⅲ)設(shè)M(x,y),O為原點(diǎn),記${D_α}=\{M(x,y)|{d_α}(M,O)≤1,α∈{R^+}\}$.若0<α<β,試寫出Dα與Dβ的關(guān)系(只需寫出結(jié)論,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,且過點(diǎn)($\frac{\sqrt{3}}{2}$,$\frac{1}{4}$).
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知A、B分別為橢圓E的右頂點(diǎn)、上頂點(diǎn),過原點(diǎn)O做斜率為k(k>0)的直線交橢圓于C、D兩點(diǎn),求四邊形ACBD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)為偶函數(shù),且f(x+2)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=($\frac{1}{2}$)x,則f($\frac{7}{2}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案