【題目】已知F1 , F2分別為橢圓C: + =1(a>b>0)的左、右兩個焦點,橢圓上點M( , )到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F(xiàn)是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.

【答案】
(1)解:依據(jù)橢圓的定義2a=4a=2,

在橢圓 上,

,把a=2代入可得b2=3.

∴橢圓方程


(2)解:由(1)得,c=1,則N(1, ),

設直線NE的方程為: ,

代入 ,得

設E(xE,yE),F(xiàn)(xF,yF),

∵點 在橢圓上,

∴由韋達定理得:

又直線NF的斜率與NE的斜率互為相反數(shù),

在上式中以﹣k代k,可得 ,

∴xF+xE= , ..

∴直線EF的斜率

= ,

即直線EF的斜率為定值,其值為


【解析】(1)由已知求得a,把已知的坐標代入橢圓方程得到關于a,b的關系式,把a代入求得b,則橢圓方程可求;(2)求出N的坐標,設出NE所在直線方程,與橢圓方程聯(lián)立求得E的坐標,同理求得F的坐標,代入兩點求斜率公式可得直線EF的斜率為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=(
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列個結(jié)論:

①棱長均相等的棱錐一定不是六棱錐;

②函數(shù)既不是奇函數(shù)又不是偶函數(shù);

③若函數(shù)的值域為,則實數(shù)的取值范圍是;

④若函數(shù)滿足條件,則的最小值為

其中正確的結(jié)論的序號是:______. (寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},a1=1,且an1﹣an1an﹣an=0(n≥2,n∈N*),記bn=a2n1a2n+1 , 數(shù)列{bn}的前n項和為Tn , 則滿足不等式Tn 成立的最大正整數(shù)n為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐S﹣ABCD,SB⊥AD,側(cè)面SAD是邊長為4的等邊三角形,底面ABCD為菱形,側(cè)面SAD與底面ABCD所成的二面角為120°.

(1)求點S到平面ABCD的距離;
(2)若E為SC的中點,求二面角A﹣DE﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 .

1)已知直線與雙曲線交于不同的兩點,求實數(shù)的值;

(2)過點作直線與雙曲線交于不同的兩點若弦恰被點平分,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某海關對同時從三個不同地區(qū)進口的某種商品進行隨機抽樣檢測,已知從三個地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測人員再用分層抽樣的方法從海關抽樣的這些商品中隨機抽取6件樣品進行檢測.

1)求這6件樣品中,來自各地區(qū)商品的數(shù)量

2)若在這6件樣品中隨機抽取2件送往另一機構(gòu)進行進一步檢測,求這2件樣品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽配廠生產(chǎn)某種零件,每個零件的出廠單價為60元,為了鼓勵更多銷售商訂購,該廠決定當一次訂購超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低元,但實際出廠單價不低于51元.

當一次訂購量最少為多少時,零件的實際出廠單價恰好為51元?

設一次訂購量為x個,零件的實際出廠單價為p元,寫出函數(shù)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩俱樂部舉行乒乓球團體對抗賽.雙方約定:
①比賽采取五場三勝制(先贏三場的隊伍獲得勝利.比賽結(jié)束)
②雙方各派出三名隊員.前三場每位隊員各比賽﹣場
已知甲俱樂部派出隊員A1、A2 . A3 , 其中A3只參加第三場比賽.另外兩名隊員A1、A2比賽場次未定:乙俱樂部派出隊員B1、B2 . B3 , 其中B1參加第一場與第五場比賽.B2參加第二場與第四場比賽.B3只參加第三場比賽
根據(jù)以往的比賽情況.甲俱樂部三名隊員對陣乙俱樂部三名隊員獲勝的概率如表:

A1

A2

A3

B1

B2

B3


(1)若甲俱樂部計劃以3:0取勝.則應如何安排A1、A2兩名隊員的出場順序.使得取勝的概率最大?
(2)若A1參加第一場與第四場比賽,A2參加第二場與第五場比賽,各隊員每場比賽的結(jié)果互不影響,設本次團體對抗賽比賽的場數(shù)為隨機變量X,求X的分布列及數(shù)學期望E(X)

查看答案和解析>>

同步練習冊答案