(2012•廈門模擬)等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12.
(I)求an與bn;
(Ⅱ)設(shè)cn=an+2bn,數(shù)列{cn}的前n項(xiàng)和為Tn.求證:Tn≥3n
分析:(I)設(shè)等差數(shù)列{an}的公差為d;等比數(shù)列{bn}的公比為q,根據(jù)a3+S3=14,b2S2=12,構(gòu)建方程,即可求an與bn
(Ⅱ)利用分組求和,求得數(shù)列的和,即可證得結(jié)論.
解答:(I)解:設(shè)等差數(shù)列{an}的公差為d;等比數(shù)列{bn}的公比為q,則
∵a3+S3=14,b2S2=12.
∴(1+2d)+(3+3d)=14,q(2+d)=12
∴d=2,q=3
∴an=1+2(n-1)=2n-1,bn=3n-1;
(Ⅱ)證明:∵cn=an+2bn,數(shù)列{cn}的前n項(xiàng)和為Tn,
∴Tn=(1+3+…+2n-1)+2(1+3+32+…+3n-1)=
n(1+2n-1)
2
+2×
1-3n
1-3
=n2+3n-1≥3n
∴Tn≥3n
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查方程組的思想,解題的關(guān)鍵是確定數(shù)列的通項(xiàng),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廈門模擬)函數(shù)f(x)=
x
3
 
-sinx+2
的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廈門模擬)已知函數(shù)f(x)=
1
3
a
x
3
 
+
1
2
a
x
2
 
-bx+b-1
在x=1處的切線與x軸平行,若函數(shù)f(x)的圖象經(jīng)過(guò)四個(gè)象限,則實(shí)數(shù)a的取值范圍是
3
16
<a<
6
5
3
16
<a<
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廈門模擬)設(shè)全集U={0,l,2,3,4,5},A={0,1},B={x|
x
2
 
-2x=0
},則A∩(CUB)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廈門模擬)函數(shù)y=
a
x
 
,y=sinax
(a>0且a≠1)在同一個(gè)直角坐標(biāo)系中的圖象可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廈門模擬)“2<x<3”是“x(x-5)<0”的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案