【題目】如圖所示的程序框圖運(yùn)行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=(

A.3
B.4
C.5
D.6

【答案】B
【解析】解:模擬執(zhí)行程序,可得:
A=1,S=1
應(yīng)滿足條件A≤H,第一次進(jìn)入循環(huán)體后S=2×1+1=3,A=2
應(yīng)滿足條件A≤H,第二次進(jìn)入循環(huán)體后S=2×3+1=7,A=3
應(yīng)滿足條件A≤H,第三次進(jìn)入循環(huán)體后S=2×7+1=15,A=4
應(yīng)滿足條件A≤H,第四次進(jìn)入循環(huán)體后S=2×15+1=31,A=5
應(yīng)不滿足條件A≤H,
故判斷框中H的值應(yīng)為4,這樣就可保證循環(huán)體只能被運(yùn)行四次.
故選:B.
由圖知,每次進(jìn)入循環(huán)體后,S的值被施加的運(yùn)算是乘以2加上1,故由此運(yùn)算規(guī)律進(jìn)行計(jì)算,經(jīng)過次運(yùn)算后輸出的結(jié)果是31,故應(yīng)填4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由于函數(shù)f(x)=sin(π﹣ωx)sin( +φ)﹣sin(ωx+ )sinφ(ω>0)的圖象部分?jǐn)?shù)據(jù)已污損,現(xiàn)可以確認(rèn)點(diǎn)C( ,0),其中A點(diǎn)是圖象在y軸左側(cè)第一個(gè)與x軸的交點(diǎn),B點(diǎn)是圖象在y軸右側(cè)第一個(gè)最高點(diǎn),則f(x)在下列區(qū)間中是單調(diào)的(
A.(0,
B.( ,
C.( ,2π)
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱錐P﹣ABC中,已知底面等邊三角形的邊長為6,側(cè)棱長為4.
(1)求證:PA⊥BC;
(2)求此三棱錐的全面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明1+2+3+…+n2= ,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上(
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的是計(jì)算的值的一個(gè)程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( )

A.
B.i>1005
C.
D.i>1006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若方程f(x)=m(m<﹣2)有兩個(gè)相異實(shí)根x1 , x2 , 且x1<x2 , 證明:x1x22<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20世紀(jì)70年代,流行一種游戲﹣﹣﹣角谷猜想,規(guī)則如下:任意寫出一個(gè)自然數(shù)n,按照以下的規(guī)律進(jìn)行變換:如果n是個(gè)奇數(shù),則下一步變成3n+1;如果n是個(gè)偶數(shù),則下一步變成 ,這種游戲的魅力在于無論你寫出一個(gè)多么龐大的數(shù)字,最后必然會落在谷底,更準(zhǔn)確的說是落入底部的4﹣2﹣1循環(huán),而永遠(yuǎn)也跳不出這個(gè)圈子,下列程序框圖就是根據(jù)這個(gè)游戲而設(shè)計(jì)的,如果輸出的i值為6,則輸入的n值為(
A.5
B.16
C.5或32
D.4或5或32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足 . (Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面積為 ,求sinB的值.

查看答案和解析>>

同步練習(xí)冊答案