若直線l1:ax+(1-a)y-3=0與直線l2:(a-1)x+(2a+3)y-2=0互相垂直,則a的值是(  )
A、-3
B、1
C、0或-
3
2
D、1或-3
分析:利用兩條直線垂直的充要條件列出方程,求出a的值.
解答:解:∵l1⊥l2
∴a(1-a)+(a-1)×(2a+3)=0,即(a-1)(a+3)=0
解得a=1或a=-3
故選D.
點評:本題考查兩直線垂直的充要條件:l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0垂直?A1A2+B1B2=0,如果利用斜率必須分類型解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

2、給出下列四個命題:
①若集合A,B滿足A∩B=A,則A⊆B;
②給定命題p,q,若“p∨q”為真,則“p∧q”為真;
③設a,b,m∈R,若a<b,則am2<bm2
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l1:ax-4y+1=0,l2:ax+y+1=0,且l1⊥l2,則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l1:ax+(1-a)y=3與直線l2:x+ay=1互相垂直,則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l1:ax+2y+6=0與直線l2:x+(a-1)y+a2-1=0平行或垂直,則a分別等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0平行,則l1與l2距離為
 

查看答案和解析>>

同步練習冊答案