已知函數(shù)f(x)=(m,n∈R)在x=1處取得極值2.
(I)求f(x)的解析式;
(II)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意的x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.
【答案】分析:(I)先由已知函數(shù)求其導(dǎo)數(shù),再根據(jù)函數(shù)f(x)在x=1處取得極值2,列出關(guān)于a,b的方程即可求得函數(shù)f(x)的解析式;
(II)求f′(x),令f′(x)>0,令f′(x)<0得函數(shù)f(x)的極小值,且當(dāng)x>1時(shí),f(x)>0恒成立,得函數(shù)f(x)的最小值,利用二次函數(shù)的圖象,對(duì)a進(jìn)行分類討論,得出g(x)在[-1,1]上的最大值,由g(x)在[-1,1]上的最大值小于等于-2得a的范圍,結(jié)合分類時(shí)a的范圍得a的取值范圍.
解答:解:(I)f′(x)==,
由題意可得,
,

∴f(x)=
(II)f′(x)=,令f'(x)=0,得x=-1或x=1
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
x(-∞,-1)-1(-1,1)1(1,+∞)
f'(x)-+-
f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減
∴f(x)在x=-1處取得極小值f(-1)=-2,在x=1處取得極大值f(1)=2
又∵x>0時(shí),f(x)>0,∴f(x)的最小值為-2(10分)∵對(duì)于任意的x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1)∴當(dāng)x∈[-1,1]時(shí),g(x)最小值不大于-2
又g(x)=x2-2ax+a=(x-a)2+a-a2
當(dāng)a≤-1時(shí),g(x)的最小值為g(-1)=1+3a,由1+3a≤-2
得a≤-1(11分)
當(dāng)a≥1時(shí),g(x)最小值為g(1)=1-a,由1-a≤-2,得a≥3
當(dāng)-1<a<1時(shí),g(x)的最小值為g(a)=a-a2
由a-a2≤-2,得a≤-1或a≥2,又-1<a<1,
所以此時(shí)a不存在.(12分)
綜上,a的取值范圍是(-∞,-1]∪[3,+∞)(13分).
點(diǎn)評(píng):(I)考查了函數(shù)的求導(dǎo)及極值的概念,還考查了利用方程求解的思想.
(II)求二次函數(shù)在動(dòng)軸定區(qū)間的最大值,數(shù)形結(jié)合,分類討論,求非初等函數(shù)的最值,求導(dǎo),利用函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案