如圖所示的四棱錐中,底面為菱形,平面,為 的中點(diǎn),
求證:(I)平面; (II)平面⊥平面.
(I)見(jiàn)解析;(II)見(jiàn)解析
解析試題分析:(I)連結(jié)交于點(diǎn),可知為中點(diǎn)。因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/44/9/kt9tn1.png" style="vertical-align:middle;" />為 的中點(diǎn),由中位線可得∥,根據(jù)線面平行的判定定理可證得平面(II)先證,再證平面⊥平面.
試題解析:證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE.
∵四邊形ABCD是菱形,∴AO=CO.
∵E為PC的中點(diǎn),∴EO∥PA。 ∵PA平面BDE,EO平面BDE,
∴PA∥平面BDE. 5分
(2)∵PA⊥平面ABCD,BD平面ABCD,∴PA⊥BD,
∵四邊形ABCD是菱形,∴BD⊥AC. ∵,∴BD⊥平面PAC,
∵BD平面PBD,∴平面PAC⊥平面PBD. 10分
考點(diǎn):線線平行、線面平行,線線垂直、線面垂直。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在幾何體中,點(diǎn)在平面ABC內(nèi)的正投影分別為A,B,C,且,E為中點(diǎn),.
(1)求證;CE∥平面,
(2)求證:平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四棱錐,底面為平行四邊形,側(cè)面底面.已知,,,為線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點(diǎn)。
(Ⅰ)求證:平面FGH⊥平面AEB;
(Ⅱ)在線段PC上是否存在一點(diǎn)M,使PB⊥平面EFM?若存在,求出線段PM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正三棱柱ABC-A'B'C'中,D是BC的中點(diǎn),AA'=AB=2.
(1)求證:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐中,平面,是正三角形,與的交點(diǎn)恰好是中點(diǎn),又,,點(diǎn)在線段上,且.
(1)求證:;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角。
(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.
(I) 試判斷直線CD與平面PAD是否垂直,并簡(jiǎn)述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com