(14分)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點(diǎn),求證PC⊥平面AEF;
(Ⅲ)求證CE∥平面PAB.
(Ⅰ)V=.
(Ⅱ)略
(Ⅲ)略
【解析】解:(Ⅰ)在Rt△ABC中,AB=1,
∠BAC=60°,∴BC=,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,
∴CD=2,AD=4.
∴SABCD=
.……………… 3分
則V=. ……………… 5分
(Ⅱ)∵PA=CA,F為PC的中點(diǎn),
∴AF⊥PC. ……………… 7分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.∴CD⊥PC.
∵E為PD中點(diǎn),F為PC中點(diǎn),
∴EF∥CD.則EF⊥PC. ……… 9分
∵AF∩EF=F,∴PC⊥平面AEF.…… 10分
(Ⅲ)證法一:
取AD中點(diǎn)M,連EM,CM.則EM∥PA.
∵EM 平面PAB,PA平面PAB,
∴EM∥平面PAB. ……… 12分
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC 平面PAB,AB平面PAB,
∴MC∥平面PAB. ……… 14分
∵EM∩MC=M,
∴平面EMC∥平面PAB.
∵EC平面EMC,
∴EC∥平面PAB. ……… 15分
證法二:
延長(zhǎng)DC、AB,設(shè)它們交于點(diǎn)N,連PN.
∵∠NAC=∠DAC=60°,AC⊥CD,
∴C為ND的中點(diǎn). ……12分
∵E為PD中點(diǎn),∴EC∥PN.……14分
∵EC 平面PAB,PN 平面PAB,
∴EC∥平面PAB. ……… 15分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD與底面ABCD垂直,PD=DC,E是PC的中點(diǎn),作EF于點(diǎn)F(Ⅰ)證明PA平面EBD.
(Ⅱ)證明PB平面EFD.
(Ⅲ)求二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EFPB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二上學(xué)期期末測(cè)試數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2.
(1)求證:PC⊥;
(2)求證:CE∥平面PAB;
(3)求三棱錐P-ACE的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(14分)已知四棱錐P-ABCD的底面為直角梯形,AB//DC,∠DAB=90°,PA底面ABCD,且PA=AD=DC=AB,E、M分別是邊PD、PC的中點(diǎn).
(Ⅰ)求證:AE面PCD;
(Ⅱ)在線段上求一點(diǎn),使得;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2.
(1)求證:PC⊥;
(2)求證:CE∥平面PAB;
(3)求三棱錐P-ACE的體積V.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com