13.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A.f(x)=$\frac{1}{|x|}$B.$f(x)={(\frac{1}{3})^x}$C.f(x)=x2+1D.f(x)=lg|x|

分析 逐一分析給定四個(gè)函數(shù)的單調(diào)性和奇偶性,可得結(jié)論.

解答 解:f(x)=$\frac{1}{|x|}$是偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞減,滿(mǎn)足條件;
$f(x)={(\frac{1}{3})}^{x}$不是偶函數(shù),不滿(mǎn)足條件;
f(x)=x2+1是偶函數(shù),但在區(qū)間(0,+∞)上單調(diào)遞增,不滿(mǎn)足條件;
f(x)=lg|x|是偶函數(shù),但在區(qū)間(0,+∞)上單調(diào)遞增,不滿(mǎn)足條件;
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性和奇偶性,熟練掌握各種基本初等函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.長(zhǎng)方體有三個(gè)面的面積分別是12,15,20,且長(zhǎng)方體的8 個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是50π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)y=ax在區(qū)間[0,2]上的最大值和最小值的和為5,則函數(shù)y=logax在區(qū)間[$\frac{1}{4}$,2]上的最大值和最小值之差是(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D為BB1的中點(diǎn),E為AB1上的一點(diǎn),AE=3EB1
(Ⅰ)證明:DE為異面直線(xiàn)AB1與CD的公垂線(xiàn);
(Ⅱ)設(shè)異面直線(xiàn)AB1與CD的夾角為45°,求二面角A1-AC1-B1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.一算法的流程圖如圖所示,則輸出S為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,若a2-b2-c2+bc=0,則A=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.36B.37C.38D.39

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意的n∈N*,都有2,an,Sn為等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式是bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+2}}$,試比較{bn}的前n項(xiàng)和Tn與$\frac{3}{4}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知不共線(xiàn)的兩個(gè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,設(shè)向量$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$,則($\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow$)+($\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow$)+(2$\overrightarrow$-$\overrightarrow{a}$)=-2$\overrightarrow{{e}_{1}}$+$\frac{5}{6}\overrightarrow{{e}_{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案