給出函數(shù)①f1(x)=x2;②f2(x)=lgx;③y=2x-2-x;④y=2x+2-x.其中是偶函數(shù)的有( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì),函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用偶函數(shù)的定義,對(duì)①②③④逐個(gè)判斷即可.
解答: 解:①∵f1(x)=x2,定義域?yàn)镽,f1(-x)=x2=f1(x),
∴f1(x)為偶函數(shù);
②∵函數(shù)的定義域?yàn)閧x|x>0},定義域不關(guān)于原點(diǎn)對(duì)稱,
∴f2(x)為非奇非偶函數(shù);
③∵y=2x-2-x的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,f(-x)=-(2x-2-x)=-f(x),
∴y=2x-2-x為奇函數(shù)
④y=2x+2-x定義域?yàn)镽,f(-x)=2-x+2x=f(x),
∴y=2x+2-x為偶函數(shù).
綜上所述,偶函數(shù)的個(gè)數(shù)是2個(gè).
故選C.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的判斷,奇偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是判斷的前提,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:|x-m|>1,命題Q:
2-x
1+x
≥0,若命題P是命題Q的必要非充分條件,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x>0,y>0且
9
x
+
1
y
=1,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x≥1是x2-x≥0的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=3n2+2n,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的圖象在區(qū)間[a,b]上連續(xù)不斷,且函數(shù)f(x)在(a,b)內(nèi)僅有一個(gè)零點(diǎn),則乘積f(a)•f(b)的符號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過(guò)兩條直線2x-y+6=0和3x+y+4=0的交點(diǎn)
(1)若直線l與直線3x-4y+4=0垂直,求直線l的方程
(2)若直線m與(1)中所求直線l平行,且m與l之間的距離為2,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log4(22x+1)-
1
2
x,判斷并證明函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|y=lg
1-x
x
},N={y|y=x2+2x+3},則(∁RM)∩N=( 。
A、{x|10<x<1}
B、{x|x>1}
C、{x|x≥2}
D、{x|1<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案