已知橢圓:的離心率為,過右焦點且斜率為的直線交橢圓兩點,為弦的中點,為坐標(biāo)原點.

(1)求直線的斜率

(2)求證:對于橢圓上的任意一點,都存在,使得成立.

 

【答案】

(1)

(2) 顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù),使得等式成立.,那么設(shè)出點M的坐標(biāo),結(jié)合向量的坐標(biāo)關(guān)系來證明。

【解析】

試題分析:解:(1)設(shè)橢圓的焦距為,因為,所以有,故有.

從而橢圓的方程可化為: 

①  知右焦點的坐標(biāo)為(),據(jù)題意有所在的直線方程為:. ②由①,②有:.                                        

③設(shè),弦的中點,由③及韋達(dá)定理有:

 

所以,即為所求.                       5分

(2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù),使得等式成立.設(shè),由(1)中各點的坐標(biāo)有:

,故.   7分

又因為點在橢圓上,所以有整理可得:

.       ④

由③有:.所以

   ⑤又點在橢圓上,故有 .      

⑥將⑤,⑥代入④可得:.                 11分

所以,對于橢圓上的每一個點,總存在一對實數(shù),使等式成立,且.

所以存在,使得.也就是:對于橢圓上任意一點 ,總存在,使得等式成立.         13分

考點:橢圓的方程和性質(zhì),以及向量的加減法

點評:解決的關(guān)鍵是根據(jù)橢圓的性質(zhì)以及直線與橢圓的位置關(guān)系的運用,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓E的離心率為e,兩焦點為F1,F(xiàn)2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個公共點,若
|PF1|
|PF2|
=e,則e的值為( 。
A、
3
3
B、
3
2
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點為F,右頂點為A,動點M為右準(zhǔn)線上一點(異于右準(zhǔn)線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為
2
3
,點M的橫坐標(biāo)為
9
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的離心率為e,兩焦點為F1、F2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,若
|PF1|
|PF2|
=e,則e的值為
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的離心率為e=
6
3
,一條準(zhǔn)線方程為x=
3
2
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動點P滿足:
OP
=
OM
+
ON
,其中M,N是橢圓上的點,直線OM與ON的斜率之積為-
1
3
,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(A題) (奧賽班做)已知橢圓E的離心率為e,左右焦點分別為F1、F2,拋物線C以F1頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,
|PF1|
|PF2|
=e
,則e的值為
3
3
3
3

查看答案和解析>>

同步練習(xí)冊答案