已知不等式對任意恒成立,則實數(shù)的取值范圍為(     )
A.B.C.D.
A

試題分析:根據(jù)題意,由于不等式對于一切的n為自然數(shù)都成立,那么
對任意恒成立, 恒成立,那么結(jié)合均值不等式可知t的范圍是,選A.
點評:主要是考查了不等式的恒成立問題,轉(zhuǎn)化為最值來求解參數(shù)的范圍,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

的解析式為         (   )
A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,則的表達式是      ___    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù) ,則的值為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義在上的函數(shù)滿足下列三個條件:①對于任意的都有;②對于任意的;③函數(shù)的圖象關于y軸對稱,則下列結(jié)論正確的是 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知yf(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2xx2.
(1)求x>0時,f(x)的解析式;
(2)若關于x的方程f(x)=2a2a有三個不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(I)若,求處的切線方程;
(II)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

滿足對于時有恒成立,則稱函數(shù)上是“被k限制”,若函數(shù)在區(qū)間上是“被2限制”的,則的取值范圍為            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果關于的不等式的解集分別為,那么稱這兩個不等式為對偶不等式.如果不等式與不等式為對偶不等式,且,那么______.

查看答案和解析>>

同步練習冊答案