17.已知復(fù)數(shù)z=3+4i,它的共軛復(fù)數(shù)記為$\overline z$,則|z•($\overline z$+1)|=20$\sqrt{2}$.

分析 由已知求出z•($\overline z$+1),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.

解答 解:∵z=3+4i,∴$\overline{z}=3-4i$,
則z•($\overline z$+1)=(3+4i)(4-4i)=28+4i,
∴|z•($\overline z$+1)|=|28+4i|=$\sqrt{2{8}^{2}+{4}^{2}}$=20$\sqrt{2}$.
故答案為:20$\sqrt{2}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,且PA=3,設(shè)G為PB中點(diǎn),點(diǎn)F在線段PD上且PF=2FD.
(1)求點(diǎn)G到ACF的距離;
(2)在線段PC上是否存在點(diǎn)E,使得BE∥面ACF,若存在,確定點(diǎn)E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知△ABC的內(nèi)角A,B,C滿足sinC[cos(A-B)+cosC]=$\frac{1}{4}$,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對(duì)的邊,則下列不等式一定成立的是(  )
A.bc(b+c)≤8B.bc(b+c)>8C.12≤abc≤24D.6≤abc≤12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在直角三角形ABC中,∠A=$\frac{π}{6}$,過直角頂點(diǎn)C作射線CM交線段AB于M,則AM>AC的概率為( 。
A.$1-\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}-1$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如圖:觀察圖形,回答下列問題:

(1)79.5~89.5這一組的頻數(shù)、頻率分別是多少?
(2)樣本的眾數(shù)、中位數(shù)的估計(jì)值分別是多少?(保留小數(shù)點(diǎn)后三位)
(3)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,若a2<b2+c2,則角A是銳角(填“直角”、“銳角”、“鈍角”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=lnx-ax在區(qū)間(1,+∞)上是單調(diào)減函數(shù),則a的取值范圍是$\underline{[{1,+∞})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{OA}$=(0,-2),$\overrightarrow{OB}$=(0,2),直線l:y=-2,動(dòng)點(diǎn)P到直線l的距離為d,且d=|$\overrightarrow{PB}$|.
1)求動(dòng)點(diǎn)P的軌跡方程;
(2)直線m:y=$\sqrt{k}$x+1(k>0)與點(diǎn)P的軌跡交于M,N兩點(diǎn),當(dāng)$\overrightarrow{AM}$•$\overrightarrow{AN}$≥17時(shí),求直線m的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.以下角:①異面直線所成角;②直線和平面所成角;③二面角的平面角,可能為鈍角的有1個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案