已知橢圓的短軸長(zhǎng)為,且斜率為的直線過(guò)橢圓的焦點(diǎn)及點(diǎn)
(1)求橢圓的方程;
(2)已知直線過(guò)橢圓的左焦點(diǎn),交橢圓于點(diǎn)P、Q.
(。┤魸M足為坐標(biāo)原點(diǎn)),求的面積;
(ⅱ)若直線與兩坐標(biāo)軸都不垂直,點(diǎn)軸上,且使的一條角平分線,則稱點(diǎn)為橢圓的“特征點(diǎn)”,求橢圓的特征點(diǎn).

(1);(2)(ⅰ)2,(ⅱ)

解析試題分析:(1)由短軸長(zhǎng),由焦點(diǎn)和點(diǎn)可算出斜率為,可以得到焦點(diǎn)坐標(biāo),所以可以得橢圓的方程。(2)(。┯上蛄康臄(shù)量積公式及三角形面積公式可得出結(jié)果。(ⅱ)設(shè)直線的方程,但是不需要求的方程,通過(guò)與橢圓聯(lián)立方程組進(jìn)行求解。
試題解析:(1)由題意可知,直線的方程為,         1分
∵直線過(guò)橢圓的焦點(diǎn),∴該焦點(diǎn)坐標(biāo)為    2分
又橢圓的短軸長(zhǎng)為,∴,∴   3分
∴橢圓的方程為   4分
(2)(。
   6分
    8分
(ⅱ)設(shè)特征點(diǎn),左焦點(diǎn)為,可設(shè)直線PQ的方程為,
消去
設(shè),則
     10分
的一條角平分線,
,即          12分
,,代入上式可得

,解得
∴橢圓C的特征點(diǎn)為.                     14分
考點(diǎn):圓錐曲線與其他知識(shí)的綜合

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線,在此拋物線上一點(diǎn)到焦點(diǎn)的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準(zhǔn)線與軸交于點(diǎn),過(guò)點(diǎn)斜率為的直線與拋物線交于、兩點(diǎn).是否存在這樣的,使得拋物線上總存在點(diǎn)滿足,若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)橢圓的左右焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)關(guān)于對(duì)稱,且
(1)求橢圓的離心率;
(2)已知是過(guò)三點(diǎn)的圓上的點(diǎn),若的面積為,求點(diǎn)到直線距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,兩焦點(diǎn)F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點(diǎn)P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C的右頂點(diǎn)為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且滿足AM⊥AN.求證:直線l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且離心率為.斜率為的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,為橢圓在軸正半軸上的焦點(diǎn),、兩點(diǎn)在橢圓上,且,定點(diǎn).
(1)求證:當(dāng)時(shí);
(2)若當(dāng)時(shí)有,求橢圓的方程;
(3)在(2)的橢圓中,當(dāng)、兩點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),試判斷 是否有最大值,若存在,求出最大值,并求出這時(shí)兩點(diǎn)所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

橢圓的離心率為,若直線與其一個(gè)交點(diǎn)的橫坐標(biāo)為,則的值為                

查看答案和解析>>

同步練習(xí)冊(cè)答案