精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.

(Ⅰ)求證:AD⊥平面SBC;

(Ⅱ)試在SB上找一點E,使得平面ABS⊥平面ADE,并證明你的結論.

 

【答案】

見解析。

【解析】

試題分析:(I)通過證明BC⊥AD,通過AD⊥SC,BC∩SC=C,證明AD⊥平面SBC;

(II)過D作DE∥BC,交SB于E,E點即為所求.直接利用直線與平面平行的判定定理即可證明BC∥平面ADE.

(Ⅰ)證明:BC⊥平面SAC,AD平面SAC,∴BC⊥AD,

又∵AD⊥SC,

BC平面SBC, SC平面SBC,

BCSC=C,

∴AD⊥平面SBC.     …………(6分)

(Ⅱ)過A作AE⊥SB,交SB于E,E點即為所求.

∵AD⊥平面SBC,SB平面SBC,

∴AD⊥SB.                   

又AE⊥SB,AEAD=A

∴SB⊥平面ADE,又SB平面ABS,由兩個平面垂直的判定定理知:

平面ABS⊥平面ADE…………(13分)考點:本題主要考查了直線與平面垂直,直線與平面平行的判定定理的應用,考查空間想象能力,邏輯推理能力.

點評:解決該試題的關鍵是熟練的運用線面垂直的判定定理和面面垂直的判定定理來證明命題的成立。

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案