當(dāng)f(x)=
5+x
+
5-x
,當(dāng)x為何值,f(x)為最大值.
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計算題,不等式的解法及應(yīng)用
分析:利用基本不等式的變形式得(
5+x
+
5-x
2
)2
5+x
2
+
5-x
2
2
=5;從而確定最值點(diǎn).
解答: 解:∵(
5+x
+
5-x
2
)2
5+x
2
+
5-x
2
2
=5;
(當(dāng)且僅當(dāng)
5+x
=
5-x
,即x=0時,等號成立)
5+x
+
5-x
≤2
5

故當(dāng)x=0時,f(x)取得最大值.
點(diǎn)評:本題考查了基本不等式在求最值時的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等腰梯形ABCD中,E、F分別是CD、AB的中點(diǎn),CD=2,AB=4,AD=BC=
2
,沿EF將梯形AFED折起,使得∠AFB=60°,如圖,若G為FB的中點(diǎn).

(1)求證:AG⊥平面BCEF;
(2)求三棱錐G-DEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=-n2+10n+11,試作出其圖象,并判斷數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面命題中,正確命題的個數(shù)為(  )
①命題:“若x2-2x-3=0,則x=3”的逆否命題為:“若x≠3,則x2-2x-3≠0”;
②命題:“存在x∈R,使x-2>lgx”的否定是“任意x∈R,x-2≤lgx”;
③“點(diǎn)M在曲線y2=4x上”是“點(diǎn)M的坐標(biāo)滿足方程y=-2
x
”的必要不充分條件;
④設(shè){an}是等比數(shù)列,則“a1<a2<a3”是“數(shù)列{an}是遞增數(shù)列”的充要條件.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD是底面為平行四邊形,面PAB⊥面ABCD,△PAB為正三角形,且AB=
1
2
AD=2,以AD為直徑的圓于BC交于點(diǎn)B,點(diǎn)E,F(xiàn)分別是AD,PC的中點(diǎn).
(1)求證:EF⊥平面PBD;
(2)求三棱錐C-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC.
(1)求證:AC⊥A1B;
(2)求三棱錐C1-ABA1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(60°+α)=
1
3
,且α為第三象限角,則cos(30°-α)+sin(30°-α)的值為( 。
A、
-2
2
-1
3
B、
2
2
+1
3
C、
-2
2
+1
3
D、
2
2
-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù),則loga2<0”的逆否命題是( 。
A、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)不是減函數(shù)
B、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)不是減函數(shù)
C、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù)
D、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若|cosθ|=-cosθ,且tanθ<0,試判斷
sin(cosθ)
cos(sinθ)
的符號;
(2)若tan(cosθ)•tan(sinθ)>0,試求出θ所在象限,并用圖形表示
θ
2
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案