(Ⅰ)解:∵定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)•f(y)(x,y∈R),
且當(dāng)x>0時(shí),f(x)>1,f(2)=4,
∴f(2)=f(1+1)=f(1)•f(1)=4,
∴f(1)=2,或f(1)=-2(舍).
故f(1)=2.
∵f(1)=f((-1)+2)=f(-1)•f(2),
∴f(-1)=
=
=
.
(Ⅱ)證明:設(shè)x
1,x
2∈R且x
1<x
2,則f(x
2)-f(x
1)=f[(x
2-x
1)+x
1]-f(x
1)=f(x
1)[f(x
2-x
1)-1]
∵x
2-x
1>0,
∴f(x
2-x
1)>1
∴f(x
2-x
1)-1>0,
∵f(x
1)=f(
)=[f(
)]
2>0,
∴f(x
1)f[(x
2-x
1)-1]>0,
∴f(x
2)>f(x
1),
故f(x)在R上是增函數(shù).
(III)解:∵
,
∴f(x
2-ax+a)•f(x
2-ax+a)=f(2x
2-2ax+2a)≥2=f(1),
∵f(x)在R上是增函數(shù),
∴2x
2-2ax+2a≥1,
∴由
對(duì)任意x∈(1,+∞)恒成立,
得2x
2-2ax+2a≥1對(duì)任意x∈(1,+∞)恒成立,
∵y=2x
2-2ax+2a-1的對(duì)稱軸是x=
,
∴在[
,+∞)上y=2x
2-2ax+2a-1是單調(diào)遞增函數(shù).
∵2x
2-2ax+2a≥1對(duì)任意x∈(1,+∞)恒成立,
∴
≤1,故a≤2.
∴實(shí)數(shù)a的取值范圍(-∞,2].
分析:(Ⅰ)由題設(shè)條件知f(2)=f(1+1)=f(1)•f(1)=4,f(1)=f((-1)+2)=f(-1)•f(2),由此能求出f(1)和f(-1).
(Ⅱ)設(shè)x
1,x
2∈R且x
1<x
2,則f(x
2)-f(x
1)=f[(x
2-x
1)+x
1]-f(x
1)=f(x
1)[f(x
2-x
1)-1],由x
2-x
1>0,知f(x
2-x
1)-1>0,再由f(x
1)=f(
)=[f(
)]
2>0,能夠證明f(x)在R上是增函數(shù).
(III)由
,知f(x
2-ax+a)•f(x
2-ax+a)=f(2x
2-2ax+2a)≥2=f(1),再由f(x)在R上是增函數(shù),能夠求出實(shí)數(shù)a的取值范圍.
點(diǎn)評(píng):本題考查抽象函數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性的判斷與證明,突出考查等價(jià)轉(zhuǎn)化思想的運(yùn)用,考查基本不等式,綜合性強(qiáng),難度大,屬于難題.