(湖北卷理19)如圖,在以點為圓心,為直徑的半圓中,,是半圓弧上一點,
,曲線是滿足為定值的動點的軌跡,且曲線過點.
(Ⅰ)建立適當的平面直角坐標系,求曲線的方程;
(Ⅱ)設過點的直線l與曲線相交于不同的兩點、.
若△的面積不小于,求直線斜率的取值范圍.
解:本小題主要考查直線、圓和雙曲線等平面解析幾何的基礎知識,考查軌跡方程的求法、不等式的解法以及綜合解題能力.(滿分13分)
(Ⅰ)解法1:以O為原點,AB、OD所在直線分別為x軸、y軸,建立平面直角坐標系,則A(-2,0),B(2,0),D(0,2),P(),依題意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲線C是以原點為中心,A、B為焦點的雙曲線.
設實平軸長為a,虛半軸長為b,半焦距為c,則c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲線C的方程為.
解法2:同解法1建立平面直角坐標系,則依題意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.∴曲線C是以原點為中心,A、B為焦點的雙曲線.
設雙曲線的方程為>0,b>0).
則由 解得a2=b2=2,
∴曲線C的方程為
(Ⅱ)解法1:依題意,可設直線l的方程為y=kx+2,代入雙曲線C的方程并整理得(1-k2)x2-4kx-6=0.
∵直線l與雙曲線C相交于不同的兩點E、F,
②
設E(x,y),F(x2,y2),則由①式得x1+x2=,于是
|EF|=
=
而原點O到直線l的距離d=,
∴S△DEF=
若△OEF面積不小于2,即S△OEF,則有
③
綜合②、③知,直線l的斜率的取值范圍為
解法2:依題意,可設直線l的方程為y=kx+2,代入雙曲線C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直線l與雙曲線C相交于不同的兩點E、F,
∴.. ②
設E(x1,y1),F(x2,y2),則由①式得
|x1-x2|= ③
當E、F在同一去上時(如圖1所示),
S△OEF=
當E、F在不同支上時(如圖2所示).
S△ODE=
綜上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面積不小于2
、
綜合②、④知,直線l的斜率的取值范圍為
科目:高中數學 來源: 題型:
(湖北卷理19)如圖,在以點為圓心,為直徑的半圓中,,是半圓弧上一點,
,曲線是滿足為定值的動點的軌跡,且曲線過點.
(Ⅰ)建立適當的平面直角坐標系,求曲線的方程;
(Ⅱ)設過點的直線l與曲線相交于不同的兩點、.
若△的面積不小于,求直線斜率的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com