已知拋物線定點(diǎn)為拋物線的焦點(diǎn),為拋物線上的一個(gè)動(dòng)點(diǎn),則的最小值為                    

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上兩定點(diǎn)C(-1,0),D(1,0)和一定直線l:x=-4,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)問點(diǎn)P在什么曲線上,并求出曲線的軌跡方程M;
(2)又已知點(diǎn)A為拋物線y2=2px(p>0)上一點(diǎn),直線DA與曲線M的交點(diǎn)B不在y軸的右側(cè),且點(diǎn)B不在x軸上,并滿足
AB
=2
DA
,求p
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率為
2
2
的橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點(diǎn)分別為F1、F2,橢圓C1與拋物線C2:y2=-x的交點(diǎn)的橫坐標(biāo)為
-2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如果直線l:y=kx+m與橢圓相交于P1、P2兩點(diǎn),設(shè)直線P1F1與P2F1的傾斜角分別為α,β,當(dāng)α+β=π時(shí),求證:直線l必過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西師大附中2010屆高三第三次模擬考試數(shù)學(xué)(理) 題型:解答題

已知平面上兩定點(diǎn)C1,0),D(1,0)和一定直線,為該平面上一動(dòng)點(diǎn),作,垂足為Q,且

   (1)問點(diǎn)在什么曲線上,并求出曲線的軌跡方程M

   (2)又已知點(diǎn)A為拋物線上一點(diǎn),直線DA與曲線M的交點(diǎn)B不在 軸的右側(cè),且點(diǎn)B不在軸上,并滿足的最小值.[來源:學(xué)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西師大附中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知平面上兩定點(diǎn)C(-1,0),D(1,0)和一定直線l:x=-4,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且
(1)問點(diǎn)P在什么曲線上,并求出曲線的軌跡方程M;
(2)又已知點(diǎn)A為拋物線y2=2px(p>0)上一點(diǎn),直線DA與曲線M的交點(diǎn)B不在y軸的右側(cè),且點(diǎn)B不在x軸上,并滿足的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案