【題目】某人要利用無人機(jī)測(cè)量河流的寬度,如圖,從無人機(jī)A處測(cè)得正前方河流的兩岸B,C的俯角分別為75°,30°,此時(shí)無人機(jī)的高是60米,則河流的寬度BC等于( )
A. 米
B. 米
C. 米
D. 米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢,問:需日相逢.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn);
(I)求異面直線A1B,AC1所成角的余弦值;
(II)求直線AB1與平面C1AD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.
(1)若E,F(xiàn)分別是PC,AD的中點(diǎn),證明:EF∥平面PAB;
(2)若E是PC的中點(diǎn),F(xiàn)是AD上的動(dòng)點(diǎn),問AF為何值時(shí),EF⊥平面PBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】比較下列各組數(shù)中兩個(gè)數(shù)的大小.
(1) 與 ;
(2)3 與3.1 ;
(3) 與 ;
(4)0.20.6與0.30.4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣ . (Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+2x+c的對(duì)稱軸為x=1,g(x)=x+ (x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時(shí)x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個(gè)實(shí)根;
(3)若F(x)=﹣f(x)+4x+c,存在實(shí)數(shù)t,對(duì)任意x∈[1,m],使F(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f(x)=x+m有區(qū)間(﹣1,2)上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍(注:相等的實(shí)數(shù)根算一個(gè)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.
(1)當(dāng)a=1時(shí),求不等式f(x)≤g(x)的解集;
(2)若f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com