【題目】實數(shù)對滿足不等式組則目標函數(shù)當且僅當,時取最大值,則的取值范圍是( )
A. B. C. D.
【答案】C
【解析】分析:作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內部.將目標函數(shù)z=kx-y對應的直線進行平移,當且僅當l經(jīng)過點C(3,1)時目標函數(shù)z達到最大值,由此觀察直線斜率的范圍結合斜率計算公式,即可得到l斜率k的取值范圍.
詳解:如圖所示:,
得到如圖的△ABC及其內部,其中A(1,2),B(4,2),C(3,1)
設z=F(x,y)=kx-y,將直線l:z=kx-y進行平移,
可得直線在y軸上的截距為-z,因此直線在y軸上截距最小時目標函數(shù)z達到最大值
∵當且僅當l經(jīng)過點C(3,1)時,目標函數(shù)z達到最大值
∴直線l的斜率應介于直線AC斜率與直線BC斜率之間,
∴k的取值范圍是
故選C.
科目:高中數(shù)學 來源: 題型:
【題目】某兒童樂園在“六一”兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數(shù).設兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
①若,則獎勵玩具一個;
②若,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
假設轉盤質地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點,,.
(1)求證:平面BCD;
(2)求異面直線AB與CD所成角的余弦值;
(3)求點E到平面ACD的距離。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1) 如果,求函數(shù)的值域;
(2) 求函數(shù)=的最大值;
(3) 如果對不等式中的任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)以往的成績記錄,甲、乙兩名隊員射擊中靶環(huán)數(shù)(環(huán)數(shù)為整數(shù))的頻率分布情況如圖所示.假設每名隊員每次射擊相互獨立.
(Ⅰ)求圖中a的值;
(Ⅱ)隊員甲進行2次射擊.用頻率估計概率,求甲恰有1次中靶環(huán)數(shù)大于7的概率;
(Ⅲ)在隊員甲、乙中,哪一名隊員的射擊成績更穩(wěn)定?(結論無需證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】利用獨立性檢驗的方法調查高中生的寫作水平與離好閱讀是否有關,隨機詢問120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計算可得K2=4.236
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,可得正確的結論是( 。
A.有95%的把握認為“寫作水平與喜好閱讀有關”
B.有97.5%的把握認為“寫作水平與喜好閱讀有關”
C.有95%的把握認為“寫作水平與喜好閱讀無關”
D.有97.5%的把握認為“寫作水平與喜好閱讀無關”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com