在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,已知acosA+bcosB=ccosC,判斷△ABC的形狀.
分析:根據(jù)題中的條件acosA+bcosB=ccosC通過正弦定理二倍角公式和三角形的內(nèi)角和公式,利用三角函數(shù)的和(差)角公式和誘導(dǎo)公式得到2cosAcosB=0,得到A或B為
π
2
得到答案即可.
解答:解:∵acosA+bcosB=ccosC,
由正弦定理可得
sinAcosA+sinBcosB=sinCcosC
∴sin2A+sin2B=sin2C,
和差化積可得:2sin(A+B)cos(A-B)=2sinCcosC
∴cos(A-B)=-cos(A+B),2cosAcosB=0
∴cosA=0或cosB=0,得A=
π
2
或B=
π
2
,
∴△ABC是直角三角形.
∴△ABC為直角三角形
點(diǎn)評(píng):考查學(xué)生三角函數(shù)中的恒等變換應(yīng)用的能力.要靈活運(yùn)用正弦定理、三角函數(shù)的和(差)角公式和誘導(dǎo)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案