9.非零向量$\overrightarrow a,\overrightarrow b$,原命題:若夾角為銳角則$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$,則原命題與逆命題的真假為( 。
A.真真B.假假C.真假D.假真

分析 根據(jù)向量的運(yùn)算性質(zhì)分別判斷原命題和逆命題的真假即可.

解答 解:若夾角為銳角,
即cos<$\overrightarrow{a}$,$\overrightarrow$>>0,
即$\overrightarrow{a}$•$\overrightarrow$>-$\overrightarrow{a}$•$\overrightarrow$,
∴${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$>${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$,
原命題正確,
反之,若$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$,
則${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$>${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$,
即$\overrightarrow{a}$•$\overrightarrow$>-$\overrightarrow{a}$•$\overrightarrow$,
即cos<$\overrightarrow{a}$,$\overrightarrow$>>0,
即夾角為銳角或0°的角,
故逆命題是假命題,
故選:C.

點(diǎn)評(píng) 本題考查了判斷命題的真假,判斷向量的運(yùn)算性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a∈R,函數(shù)f(x)=x3-ax2+ax+a,g(x)=f(x)+(a-3)x.
(1)求證:曲線y=f(x)在點(diǎn)(1,f(x))處的切線過(guò)定點(diǎn);
(2)若g(1)是g(x)在區(qū)間(0,3]上的極大值,但不是最大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.對(duì)于任意實(shí)數(shù)x,[x]表示不超過(guò)x的最大整數(shù),如[-0,2]=-1,[1.72]=1,已知${a_n}=[{\frac{n}{3}}]({n∈{N^*}}),{S_n}$為數(shù)列{an}的前項(xiàng)和,則S2017=677712.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x(x∈R).
(Ⅰ)求函數(shù)f(x)的最大值及相應(yīng)的x取值;
(Ⅱ)該函數(shù)的圖象可以由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行著頑強(qiáng)的斗爭(zhēng),到2001年底全縣的綠化率已達(dá)30%.從2002年開(kāi)始,每年將出現(xiàn)這樣的局面,即現(xiàn)有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化.
(1)設(shè)全縣面積為1,2001年底綠化面積為${a_1}=\frac{3}{10}$,經(jīng)過(guò)n年綠化總面積達(dá)到an.求an和an+1的關(guān)系式子;
(2)至少經(jīng)過(guò)多少年努力才能使全縣的綠化率達(dá)到60%?(取lg2=0.30).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若曲線y=kx2-lnx在點(diǎn)(1,k)處的切線與直線x+2y+1=0垂直,則k=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.甲、乙兩所學(xué)校高三年級(jí)分別有1200人,1000人,為了了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:

分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32

分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計(jì)算x,y的值;
(Ⅱ)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩所學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率;
(Ⅲ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異.
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線l1:ax+4y-c=0與直線l2:6x+8y+3=0平行,且l1與圓M:x2+(y+c)2=1相切,則c的值為( 。
A.±1B.±$\sqrt{2}$C.±2D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某百貨公司1~6月份的銷售量x與利潤(rùn)y的統(tǒng)計(jì)數(shù)據(jù)如表:
月份123456
銷售量x(萬(wàn)件)1011131286
利潤(rùn)y(萬(wàn)元)222529261612
(1)根據(jù)2~5月份的數(shù)據(jù),畫(huà)出散點(diǎn)圖,求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2萬(wàn)元,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)所得線性回歸方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$;  $\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案