1.直線AB的傾斜角為45°,則直線AB的斜率等于( 。
A.1B.-1C.5D.-5

分析 直接由斜率等于傾斜角的正切值得答案.

解答 解:∵直線的傾斜角為45°,
∴該直線的斜率k=tan45°=1.
故選:A.

點評 本題考查直線的傾斜角,考查了直線的傾斜角和斜率的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC的面積是$\frac{1}{2}$,∠B是鈍角,AB=1,BC=$\sqrt{2}$,則AC=( 。
A.5B.2C.$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}
(1)若B=∅,求m的取值范圍;
(2)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值-$\frac{4}{3}$.
(1)求函數(shù)的解析式.
(2)判斷函數(shù)的極值點并求極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法中,正確的是(  )
A.經(jīng)過不同的三點有且只有一個平面
B.分別在兩個平面內(nèi)的兩條直線是異面直線
C.垂直于同一個平面的兩條直線平行
D.垂直于同一個平面的兩個平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線x-2y+2m=0與坐標(biāo)軸圍成的三角形的面積不小于1,則實數(shù)m的取值范圍為(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.(理)設(shè)F1,F(xiàn)2分別是雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦點,若點P在雙曲線上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=(  )
A.$\sqrt{13}$B.2$\sqrt{17}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$的起點相同且滿足$|{\overrightarrow a}|=|{\overrightarrow a-\overrightarrow b}|=2,|{\overrightarrow b}|=\sqrt{6},(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)=0$,則$\overrightarrow{|c|}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.實數(shù)x,y滿足$2{cos^2}(x+y-1)=\frac{{{{(x+1)}^2}+{{(y-1)}^2}-2xy}}{x-y+1}$,則xy的最小值為( 。
A.2B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案