分析:(1)由f(x)=
| x2-2x+4,x<-1 | -2x+5,-1≤x<1 | 3,x≥1 |
| |
,利用分段函數(shù)的性質(zhì),能求出f(-2),f(0),f(1)的值.
(2)當(dāng)x<-1時(shí),函數(shù)y=x
2-2x+4∈(7,+∞);當(dāng)-1≤x≤1時(shí),函數(shù)y=-2x+5∈(3,7];當(dāng)x≥1時(shí),函數(shù)y=3.由此能求出函數(shù)的值域.
解答:解:(1)∵f(x)=
| x2-2x+4,x<-1 | -2x+5,-1≤x<1 | 3,x≥1 |
| |
,
∴f(-2)=(-2)
2-2(-2)+4=12,
f(0)=-2×0+5=5,
f(1)=3.…(3分)
(2)當(dāng)x<-1時(shí),函數(shù)y=x
2-2x+4∈(7,+∞).…(5分)
當(dāng)-1≤x≤1時(shí),函數(shù)y=-2x+5∈(3,7].…(7分)
當(dāng)x≥1時(shí),函數(shù)y=3.…(9分)
綜上所述,函數(shù)的值域?yàn)閇3,+∞).…(10分)
點(diǎn)評(píng):本題考查分段函數(shù)的函數(shù)值和值域的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.