已知f(x)是定義在{-2,-1,0,1,2}上的奇函數(shù),且f(-1)=
12
,f(2)=1,則f(0)=
 
;f(x)的值域是
 
分析:根據(jù)奇函數(shù)的性質(zhì)得到f(0)=0,再根據(jù)f(-x)=-f(x)分別求得x=-2,x=-1,x=0,x=1,x=2時(shí)f(x)的取值,得到f(x)的值域.
解答:解:根據(jù)奇函數(shù)的性質(zhì)得f(0)=0,
又f(-x)=-f(x),f(-1)=
1
2
,f(2)=1
∴f(1)=-
1
2
,f(-2)=-1,∴f(x)∈{-1,-
1
2
,0,
1
2
,1}

故答案為:0;{-1,-
1
2
,0,
1
2
,1}
點(diǎn)評(píng):本題考查了奇函數(shù)的性質(zhì),要求會(huì)利用函數(shù)的奇偶性進(jìn)行解題,能根據(jù)奇函數(shù)的定義求解相關(guān)問(wèn)題,特別注意奇函數(shù)中f(0)=0得應(yīng)用,能使得解題更為快捷簡(jiǎn)便.值域要注意答案的書(shū)寫(xiě),要寫(xiě)成集合或區(qū)間的形式,學(xué)生極容易出錯(cuò).本題屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對(duì)所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案