已知雙曲線-=1(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),則雙曲線的焦距為   
【答案】分析:由已知方程即可得出雙曲線的左頂點(diǎn)、一條漸近線方程與拋物線的焦點(diǎn)、準(zhǔn)線的方程,再根據(jù)數(shù)量關(guān)系即可列出方程,解出即可.
解答:解:∵雙曲線-=1(a>0,b>0)的左頂點(diǎn)(-a,0)與拋物線y2=2px(p>0)的焦點(diǎn)F的距離為4,∴;
又雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),∴漸近線的方程應(yīng)是,而拋物線的準(zhǔn)線方程為,因此,
聯(lián)立得,解得,
=2
故雙曲線的焦距為
故答案為
點(diǎn)評(píng):熟練掌握?qǐng)A錐曲線的圖象與性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為 (O為原點(diǎn)),則兩條漸近線的夾角為(    )

A.30°             B.45°              C.60°              D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山西省晉中市昔陽(yáng)中學(xué)高二(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省六安市壽縣迎河中學(xué)高二(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市啟東市匯龍中學(xué)高二(上)第二次學(xué)情調(diào)查數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年貴州省冊(cè)亨縣民族中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案