如果求證:成等差數(shù)列。
見(jiàn)解析


故   ,即   成等差數(shù)列。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果(=1,2,3,…)為完全平方數(shù),則稱數(shù)
具有“性質(zhì)”。
不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且
時(shí)滿足下面兩個(gè)條件:①的一個(gè)排列;②數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”。
(I)設(shè)數(shù)列的前項(xiàng)和,證明數(shù)列具有“性質(zhì)”;
(II)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換性質(zhì)”,具有此性質(zhì)的數(shù)列請(qǐng)寫出相應(yīng)的數(shù)列,不具此性質(zhì)的說(shuō)明理由;
(III)對(duì)于有限項(xiàng)數(shù)列:1,2,3,…,,某人已經(jīng)驗(yàn)證當(dāng)時(shí),
數(shù)列具有“變換性質(zhì)”,試證明:當(dāng)”時(shí),數(shù)也具有“變換性質(zhì)”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和.(nN*).
(Ⅰ)若數(shù)列{an}單調(diào)遞增,且a2a1、a5的等比中項(xiàng),證明:
(Ⅱ)設(shè){an}的首項(xiàng)為a1,公差為d,且,問(wèn)是否存在正常數(shù)c,使對(duì)任意自然數(shù)n都成立,若存在,求出c(用d表示);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為,且
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,試比較的大小,并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列具有性質(zhì)P:對(duì)任意,
,兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),現(xiàn)給出以下四個(gè)命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則;
④若數(shù)列具有性質(zhì)P,則
其中真命題有
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是定義在上恒不為零的函數(shù),對(duì)任意的實(shí)數(shù),都有,若,,(),則數(shù)列的前項(xiàng)和的最小值是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列是等比數(shù)列,,公比q是的展開式的第二項(xiàng)(按x的降冪排列)求數(shù)列的通項(xiàng)與前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等比數(shù)列中,的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等差數(shù)列中,,則的值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案