精英家教網 > 高中數學 > 題目詳情
選做題:請考生在下列兩題中任選一題作答.若兩題都做,則按做的第一題評閱計分.本題共5分.
(1)(不等式選講)若實數x、y滿足|x|+|y|≤1,則x2-xy+y2的最大值為
1
1

(2)(坐標系與參數方程)若直線
x=1-2t
y=2+3t
(t為參數)與直線4x+ky=1垂直,則常數k=
-6
-6
分析:(1)由條件可得x2 +2|xy|+y2≤1,再由x2-xy+y2≤x2 +|xy|+y2≤x2 +2|xy|+y2≤1,可得 x2-xy+y2 有最大值.
(2)把直線
x=1-2t
y=2+3t
(t為參數)消去參數化為普通方程,根據兩直線垂直,斜率之積等于-1求得k的值.
解答:解:(1)∵|x|+|y|≤1,∴x2 +2|xy|+y2≤1.
∵由于 x2-xy+y2≤x2 +|xy|+y2≤x2 +2|xy|+y2≤1,故 x2-xy+y2 的最大值為1,
當且僅當x=0或 y=0時,x2-xy+y2 有最大值為1,
故答案為 1.
 (2)把直線
x=1-2t
y=2+3t
(t為參數)消去參數化為普通方程為 3x+2y-7=0.
由于它和與直線4x+ky=1垂直,故有斜率之積等于-1,即-
3
2
×(-
4
k
)=-1,解得k=-6,
故答案為-6.
點評:本題主要考查絕對值不等式的應用,把參數方程化為普通方程的方法,兩直線垂直的性質,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則接所做的第一題計分)
(l)(坐標系與參數方程選做題)在直角坐標系xoy中,曲線C1參數方程
x=cosa
y=1+sina
(a為參數),在極坐標系(與直角坐標系xoy相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C2的方程為p(cosθ-sinθ)+1=0,則曲線C1與 C2的交點個數為
2
2

(2)(不等式選做題)若關于x的不等式ax2-|x-1|+2a<0的解集為空集,則a的取值范圍是
a
3
+1
4
a
3
+1
4

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題:請考生在下列兩題中任選一題作答.若兩題都做,則按做的第一題評閱計分.本題共5分.
(1)(坐標系與參數方程選做題)若曲線的極坐標方程為ρ=2sinθ+4cosθ,以極點為原點,極軸為x軸正半軸建立直角坐標系,則該曲線的直角坐標方程為
x2+y2-4x-2y=0
x2+y2-4x-2y=0

(2)(不等式選擇題)對于實數x,y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為
5
5

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評閱計分)
(1)已知圓的極坐標方程為ρ=2cosθ,則該圓的圓心到直線ρsinθ+2ρcosθ=1的距離是
5
5
5
5

(2)若關于x的不等式|a-1|+2≥|x+1|+|x-3|存在實數解,則實數a的取值范圍是
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題:請考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評閱計分.
(1)(坐標系與參數方程選做題) 在極坐標系下,已知直線l的方程為ρcos(θ-
π
3
)=
1
2
,則點M(1,
π
2
)到直線l的距離為
3
-1
2
3
-1
2

(2)(幾何證明選講選做題) 如圖,P為圓O外一點,由P引圓O的切線PA與圓O切于A點,引圓O的割線PB與圓O交于C點.已知AB⊥AC,PA=2,PC=1.則圓O的面積為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則按做的第一題評閱計分)
(1)(極坐標與參數方程)在直角坐標系xOy中,圓C的參數方程為
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ為參數,r>0).以O為極點,x軸正半軸為極軸,并取相同的單位長度建立極坐標系,直線l的極坐標方程為ρsin(θ+
π
4
)=1
.當圓C上的點到直線l的最大距離為4時,圓的半徑r=
1
1

(2)(不等式)對于任意實數x,不等式|2x+m|+|x-1|≥a恒成立時,若實數a的最大值為3,則實數m的值為
4或-8
4或-8

查看答案和解析>>

同步練習冊答案