分析 (Ⅰ)證明EF∥面OBC,可得EF∥B1C1,即可證明:直線B1C1∥平面ABC;
(Ⅱ)若OA1=$\frac{3}{2}$,以OA,OB,OC為X軸,Y軸,Z軸建立空間直角坐標系,求出平面的法向量,利用向量的夾角公式求二面角O-A1B1-C1的余弦值.
解答 (Ⅰ)證明:∵E,F(xiàn)分別是AB,AC的中點,∴EF∥BC
又∵EF?面OBC,∴EF∥面OBC …(2分)
∵面A1B1C1∩面OBC=B1C1,EF?面A1B1C1∩
∴EF∥B1C1…(4分)
又∵B1C1?面ABC,∴B1C1∥面ABC …(6分)
(Ⅱ)解:如圖,以OA,OB,OC為X軸,Y軸,Z軸建立空間直角坐標系,則O(0,0,0),
A(2,0,0),B(0,2,0),C(0,0,2),E(1,1,0),F(xiàn)(1,0,1),…(8分)
∵B1∈OB,設B1(0,m,0),又∵點B1∈平面A1EF,
∴$\overrightarrow{O{B_1}}=λ\overrightarrow{OE}+μ\overrightarrow{OF}+(1-λ-μ)\overrightarrow{O{A_1}}=(\frac{-(λ+μ)+3}{2},λ,μ)=(0,m,0)$,
解得m=3
∴B1(0,3,0),同理C1(0,0,3)…(10分)
設平面A1B1C1的法向量為m=(x,y,z),$\overrightarrow{{A_1}{B_1}}=(-\frac{3}{2},3,0),\overrightarrow{{A_1}{C_1}}=(-\frac{3}{2},0,3)$,$m•\overrightarrow{{A_1}{B_1}}=-\frac{3}{2}x+3y=0$,$m•\overrightarrow{{A_1}{C_1}}=-\frac{3}{2}x+3z=0$,取m=(2,1,1),…(12分)
又知平面OA1B1即平面OAB的法向量為n=(0,0,1),設二面角O-A1B1-C1為θ,
∵二面角O-A1B1-C1為銳角,∴$cosθ=|\frac{m•n}{|m|•|n|}|=\frac{1}{{1•\sqrt{6}}}=\frac{{\sqrt{6}}}{6}$,…(14分)
∴二面角O-A1B1-C1的余弦值為$\frac{{\sqrt{6}}}{6}$. …(15分)
點評 本題考查線面平行的判定與性質,考查二面角的余弦值,考查向量方法的運用,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(文)試卷(解析版) 題型:解答題
市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放(且)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數據:取).
查看答案和解析>>
科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(理)試卷(解析版) 題型:選擇題
冪函數經過點,則是( )
A.偶函數,且在上是增函數
B.偶函數,且在上是減函數
C.奇函數,且在上是減函數
D.非奇非偶函數,且在上是增函數
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com