精英家教網 > 高中數學 > 題目詳情
14.如圖,正三棱錐O-ABC的三條側棱OA,OB,OC兩兩垂直,且OA=OB=OC=2.E、F分別是AB、AC的中點,過EF作平面與側棱OA,OB,OC或其延長線分別相交于A1、B1、C1
(Ⅰ)求證:直線B1C1∥平面ABC;
(Ⅱ)若OA1=$\frac{3}{2}$,求二面角O-A1B1-C1的余弦值.

分析 (Ⅰ)證明EF∥面OBC,可得EF∥B1C1,即可證明:直線B1C1∥平面ABC;
(Ⅱ)若OA1=$\frac{3}{2}$,以OA,OB,OC為X軸,Y軸,Z軸建立空間直角坐標系,求出平面的法向量,利用向量的夾角公式求二面角O-A1B1-C1的余弦值.

解答 (Ⅰ)證明:∵E,F(xiàn)分別是AB,AC的中點,∴EF∥BC
又∵EF?面OBC,∴EF∥面OBC                       …(2分)
∵面A1B1C1∩面OBC=B1C1,EF?面A1B1C1∩
∴EF∥B1C1…(4分)
又∵B1C1?面ABC,∴B1C1∥面ABC                       …(6分)
(Ⅱ)解:如圖,以OA,OB,OC為X軸,Y軸,Z軸建立空間直角坐標系,則O(0,0,0),
A(2,0,0),B(0,2,0),C(0,0,2),E(1,1,0),F(xiàn)(1,0,1),…(8分)

∵B1∈OB,設B1(0,m,0),又∵點B1∈平面A1EF,
∴$\overrightarrow{O{B_1}}=λ\overrightarrow{OE}+μ\overrightarrow{OF}+(1-λ-μ)\overrightarrow{O{A_1}}=(\frac{-(λ+μ)+3}{2},λ,μ)=(0,m,0)$,
解得m=3
∴B1(0,3,0),同理C1(0,0,3)…(10分)
設平面A1B1C1的法向量為m=(x,y,z),$\overrightarrow{{A_1}{B_1}}=(-\frac{3}{2},3,0),\overrightarrow{{A_1}{C_1}}=(-\frac{3}{2},0,3)$,$m•\overrightarrow{{A_1}{B_1}}=-\frac{3}{2}x+3y=0$,$m•\overrightarrow{{A_1}{C_1}}=-\frac{3}{2}x+3z=0$,取m=(2,1,1),…(12分)
又知平面OA1B1即平面OAB的法向量為n=(0,0,1),設二面角O-A1B1-C1為θ,
∵二面角O-A1B1-C1為銳角,∴$cosθ=|\frac{m•n}{|m|•|n|}|=\frac{1}{{1•\sqrt{6}}}=\frac{{\sqrt{6}}}{6}$,…(14分)
∴二面角O-A1B1-C1的余弦值為$\frac{{\sqrt{6}}}{6}$.                      …(15分)

點評 本題考查線面平行的判定與性質,考查二面角的余弦值,考查向量方法的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

4.設正項數列{an}滿足:a1=$\frac{1}{2}$,an+1=$\frac{1}{1+an}$,n∈N*
(1)證明:若an<$\frac{\sqrt{5}-1}{2}$,則an+1>$\frac{\sqrt{5}-1}{2}$;
(2)回答下列問題并說明理由:
是否存在正整數N,當n≥N時|an-$\frac{\sqrt{5}-1}{2}$|+|an+1-$\frac{\sqrt{5}-1}{2}$|<0.001恒成立?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.某汽車生產企業(yè)上年度生產某一品牌汽車的投入成本為10萬元/輛.出廠價為13萬元/每輛,年銷售量為5000輛,本年度為適應市場需求,計劃提高產品檔次,適當增加投入成本,若每輛車投入成本增加的比例為x(0<x<1),則出廠價相應的提高比例為0.7x,年銷售量也相應增加,已知年利潤=(每輛車的出廠價-每輛車的投入成本)×年銷售量).
(1)若每年銷售量的比例為0.4x,寫出本年度的年利潤關于x的函數關系式;
(2)若年銷售量關于x的函數為y=3240(-x2+2x+$\frac{5}{3}$),則當x為何值時,本年度的年利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,AB∥DC,∠ADC=90°,PC=AB=2AD=2DC=2,點E為PB的中點.
(1)求證:平面PAC⊥平面PBC;
(2)求點P到平面ACE的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知函數f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)若對任意的實數a,函數f(x)與g(x)的圖象在x=x0處的切線斜率總相等,求x0的值;
(2)對任意x≥1,不等式f(x)-g(x)≥1恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知實數a>0函數f(x)=ex-ax-1(e為自然對數的底數).
(Ⅰ)求函數f(x)的單調區(qū)間及最小值;
(Ⅱ)若f(x)≥0對任意的x∈R恒成立,求實數a的值;
(Ⅲ)證明:ln(1+$\frac{2}{2×3}$)+ln(1+$\frac{4}{3×5}$)+ln(1+$\frac{8}{5×9}$)+…+ln[1+$\frac{2^n}{{({2^{n-1}}+1)({2^n}+1)}}}$]<1(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知△ABC內角A,B,C的對邊分別是a,b,c,且滿足$\sqrt{3}$asinC=c(cosA+1).
(I) 求角A的大。
(Ⅱ)已知函數f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(文)試卷(解析版) 題型:解答題

市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.

(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?

(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數據:).

查看答案和解析>>

科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(理)試卷(解析版) 題型:選擇題

冪函數經過點,則是( )

A.偶函數,且在上是增函數

B.偶函數,且在上是減函數

C.奇函數,且在上是減函數

D.非奇非偶函數,且在上是增函數

查看答案和解析>>

同步練習冊答案