3.已知函數(shù)y=f(x+2)的定義域為(0,2),則函數(shù)y=f(log2x)的定義域為( 。
A.(-∞,1)B.(1,4)C.(4,16)D.($\frac{1}{4}$,1)

分析 由函數(shù)y=f(x+2)的定義域為(0,2),求出f(x)的定義域,進一步求得函數(shù)y=f(log2x)的定義域.

解答 解:∵函數(shù)y=f(x+2)的定義域為(0,2),即x∈(0,2),
得x+2∈(2,4),
∴f(x)的定義域為(2,4).
由2<log2x<4,得4<x<16.
∴函數(shù)y=f(log2x)的定義域為(4,16).
故選:C.

點評 本題考查了函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問題的求解方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a=log32,那么用a表示log38-log3$\frac{3}{4}$是( 。
A.a-2B.5a-1C.3a-(1+a)2D.3a-a2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知A={x|x2-2x-3<0},B={x||x-1|<a}.
(1)若A?B,求實數(shù)a的取值范圍;
(2)若B?A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)曲線C:$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{{m}^{2}-9}$=1,則“m>3”是“曲線C為雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC⊥BC,AC=BC=$\frac{1}{2}$AA1=2,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求直線AC與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=3|x|+log3|x|.
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)說明函數(shù)f(x)在(0,+∞)上的單調(diào)性,并利用單調(diào)性定義證明;
(3)若 f(2a)<28,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x||x-2|≥1},集合B={x|$\frac{1}{x}$<1},則A∩B=(-∞,0)∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知矩陣M=$|\begin{array}{l}{2}&{3}\\{a}&{1}\end{array}|$的一個特征值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{3}$sinωx-cosωx+m(ω>0,x∈R,m是常數(shù))的圖象上的一個最高點$(\frac{π}{3},1)$,且與點$(\frac{π}{3},1)$最近的一個最低點是$(-\frac{π}{6},-3)$.
(Ⅰ)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\overrightarrow{AB}•\overrightarrow{BC}=-\frac{1}{2}$ac,求函數(shù)f(A)的值域.

查看答案和解析>>

同步練習(xí)冊答案