分析 (Ⅰ)證明:AB∥平面PCD,即可證明AB∥EF;
(Ⅱ)利用平面PAD⊥平面ABCD,證明CD⊥AF,PA=AD,所以AF⊥PD,即可證明AF⊥平面PCD;
解答 (本題滿分為12分)
解:(Ⅰ)證明:因?yàn)榈酌鍭BCD是正方形,
所以AB∥CD.
又因?yàn)锳B?平面PCD,CD?平面PCD,
所以AB∥平面PCD.
又因?yàn)锳,B,E,F(xiàn)四點(diǎn)共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF.…(5分)
(Ⅱ)證明:在正方形ABCD中,CD⊥AD.
又因?yàn)槠矫鍼AD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以CD⊥平面PAD.
又AF?平面PAD
所以CD⊥AF.
由(Ⅰ)可知AB∥EF,
又因?yàn)锳B∥CD,所以CD∥EF.由點(diǎn)E是棱PC中點(diǎn),所以點(diǎn)F是棱PD中點(diǎn).
在△PAD中,因?yàn)镻A=AD,所以AF⊥PD.
又因?yàn)镻D∩CD=D,所以AF⊥平面PCD.…(12分)
點(diǎn)評(píng) 本題考查線面平行的性質(zhì),平面與平面垂直的性質(zhì),考查線面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-2,0) | C. | (0,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com