10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.

分析 (Ⅰ)證明:AB∥平面PCD,即可證明AB∥EF;
(Ⅱ)利用平面PAD⊥平面ABCD,證明CD⊥AF,PA=AD,所以AF⊥PD,即可證明AF⊥平面PCD;

解答 (本題滿分為12分)
解:(Ⅰ)證明:因?yàn)榈酌鍭BCD是正方形,
所以AB∥CD.
又因?yàn)锳B?平面PCD,CD?平面PCD,
所以AB∥平面PCD.
又因?yàn)锳,B,E,F(xiàn)四點(diǎn)共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF.…(5分)
(Ⅱ)證明:在正方形ABCD中,CD⊥AD.
又因?yàn)槠矫鍼AD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以CD⊥平面PAD.
又AF?平面PAD
所以CD⊥AF.
由(Ⅰ)可知AB∥EF,
又因?yàn)锳B∥CD,所以CD∥EF.由點(diǎn)E是棱PC中點(diǎn),所以點(diǎn)F是棱PD中點(diǎn).
在△PAD中,因?yàn)镻A=AD,所以AF⊥PD.
又因?yàn)镻D∩CD=D,所以AF⊥平面PCD.…(12分)

點(diǎn)評(píng) 本題考查線面平行的性質(zhì),平面與平面垂直的性質(zhì),考查線面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}中,a1=t,an+1=$\frac{{a}_{n}}{2}$+$\frac{2}{{a}_{n}}$,若{an}為單調(diào)遞減數(shù)列,則實(shí)數(shù)t的取值范圍是(  )
A.(-∞,-2)B.(-2,0)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.圓C與直線x+y=0及x+y-4=0都相切,圓心在直線x-y=0上,則圓C的方程為(x-1)2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,一只螞蟻沿側(cè)面CC1D1D從C點(diǎn)出發(fā),經(jīng)過棱DD1上的一點(diǎn)M到達(dá)A1,當(dāng)螞蟻所走的路程最短時(shí),
(Ⅰ)求B1M的長;
(Ⅱ)求證:B1M⊥平面MAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}與{bn}滿足an+1-qbn+1=an-qbn,其中q∈R,n∈N*
(1)若{bn}是公差為2的等差數(shù)列,且a1=q=3,求數(shù)列{an}的通項(xiàng)公式;
(2)若{bn}是首項(xiàng)為2,公比為q的等比數(shù)列,a1=3q<0,且對(duì)任意m,n∈N*,an≠0,都有$\frac{a_m}{a_n}$∈(${\frac{1}{6}$,6),試求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={x|x=2k+1,k∈Z},B={x|0<x<5},則A∩B={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在集合A={1,2,3,4,…,2n}中,任取m(m≤n,m,n∈N*)個(gè)元素構(gòu)成集合Am.若Am的所有元素之和為偶數(shù),則稱Am為A的偶子集,其個(gè)數(shù)記為f(m);若Am的所有元素之和為奇數(shù),則稱Am為A的奇子集,其個(gè)數(shù)記為g(m).令F(m)=f(m)-g(m).
(1)當(dāng)n=2時(shí),求F(1),F(xiàn)(2),F(xiàn)(3)的值;
(2)求F(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+2x.
(1)用定義證明函數(shù)f(x)在(0,+∞)上是增函數(shù);
(2)設(shè)g(x)=ln$\frac{x+2}{x-2}$,若對(duì)任意x1∈(0,1),x2∈(k,k+1)(k∈N),使f(x1)<g(x2),求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)與雙曲線$\frac{x^2}{2}-{y^2}$=1有共同的焦點(diǎn),拋物線x2=4y的焦點(diǎn)為橢圓C的一個(gè)頂點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)$N(\frac{x_0}{a},\frac{y_0})$稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.直線l與橢圓C交于不同的兩點(diǎn)A,B,且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q.
(i)若直線l的方程為y=x,求P,Q兩點(diǎn)的坐標(biāo);
(ii)若以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,那么△AOB的面積是否為定值?若是定值,試求出該定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案