4.已知四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為矩形,AB=2,BC=4,PA=4,則該四棱錐外接球的表面積為(  )
A.B.36πC.72πD.144π

分析 把四棱錐補(bǔ)成長(zhǎng)方體,根據(jù)長(zhǎng)方體的對(duì)角線長(zhǎng)等于球的直徑求得外接球的半徑,代入球的表面積公式計(jì)算.

解答 解:把四棱錐補(bǔ)成長(zhǎng)方體,則四棱錐的外接球是長(zhǎng)方體的外接球,
∵長(zhǎng)方體的對(duì)角線長(zhǎng)等于球的直徑,
∴2R=$\sqrt{4+16+16}$=6,
∴R=3,
外接球的表面積S=4πR2=36π.
故選:B.

點(diǎn)評(píng) 本題考查了棱錐的外接球的表面積的求法,利用長(zhǎng)方體的對(duì)角線長(zhǎng)等于球的直徑求得外接球的半徑是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若雙曲線$\frac{x^2}{2-k}+\frac{y^2}{k-1}$=1的焦點(diǎn)在x軸上,則實(shí)數(shù)k的取值范圍是( 。
A.(一∞,1)B.(2,+∞)C.(1,2)D.(一∞,1)U(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若y=f(2x-1)是周期為t的周期函數(shù),則函數(shù)y=f(x)的一個(gè)周期是2t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知△ABC的內(nèi)角A滿足sin2A=$\frac{1}{3}$,則sinA+cosA=( 。
A.-$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{5}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)($\sqrt{3}$,$\frac{1}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓Γ方程;
(Ⅱ)設(shè)直線y=x+m與橢圓Γ交于不同兩點(diǎn)A,B,若點(diǎn)P(0,1)滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{lnx+a}{x}(a∈$R).
(1)若曲線在點(diǎn)(1,f(1))處的切線與直線x-y-1=0平行,求a的值;
(2)在(1)條件下,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(3)當(dāng)a=1,且x≥1時(shí),證明:f(x)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=x3-f′(2)x2+3x-5,則f′(2)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)M={1,2,3,4},N={2,4,6,8},則M∩N=( 。
A.{1,2,3,4,6,8}B.{2,4}C.{1,3}D.{6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若logax1=log(a+1)x2=log(a+2)x3>0,則x1,x2,x3之間的大小關(guān)系為( 。
A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x3<x2<x1

查看答案和解析>>

同步練習(xí)冊(cè)答案