證明:
2cosθ-sin2θ
2cosθ+sin2θ
=tg2(
90°-θ
2
).
分析:先根據(jù)正弦函數(shù)的二倍角公式進(jìn)行化簡(jiǎn),再由誘導(dǎo)公式將正弦轉(zhuǎn)化為余弦函數(shù),最后根據(jù)萬(wàn)能公式可得證.
解答:證:左邊=
2cosθ(1-sinθ)
2cosθ(1+sinθ)

=
1-sinθ
1+sinθ

=
1-cos(90°-θ)
1+cos(90°-θ)

=tg2 (
90°-θ
2
)

=右邊.
點(diǎn)評(píng):本題主要考查三角函數(shù)的二倍角公式、誘導(dǎo)公式的應(yīng)用.考查公式的記憶情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州二模)如圖是函數(shù)f(x)=Asin(ωx+φ),A>0,ω>0,0<φ<
π
2
的部分圖象,M,N是它與軸的兩個(gè)交點(diǎn),D,C分別為它的最高點(diǎn)和最低點(diǎn),點(diǎn)F (0,1)是線段MD的中點(diǎn),S△CDM=
3

(I)求函數(shù)f(x)的解析式;
(II)在△CDM中,記∠DMN=α,∠CMN=β.證明:sinC=2cosαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西安模擬)(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(坐標(biāo)系與參數(shù)方程)直線3x-4y-1=0被曲線
x=2cosθ
y=1+2sinθ
(θ為參數(shù))所截得的弦長(zhǎng)為
2
3
2
3

B.(不等式選講)若關(guān)于x不等式|x-1|+|x-m|<2m的解集為∅,則實(shí)數(shù)m的取值范圍為
m≤
1
3
m≤
1
3

C.(幾何證明選講)若Rt△ABC的內(nèi)切圓與斜邊AB相切于D,且AD=1,BD=2,則S△ABC=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖是函數(shù)f(x)=Asin(ωx+φ),A>0,ω>0,0<φ<數(shù)學(xué)公式的部分圖象,M,N是它與軸的兩個(gè)交點(diǎn),D,C分別為它的最高點(diǎn)和最低點(diǎn),點(diǎn)F (0,1)是線段MD的中點(diǎn),S△CDM=數(shù)學(xué)公式
(I)求函數(shù)f(x)的解析式;
(II)在△CDM中,記∠DMN=α,∠CMN=β.證明:sinC=2cosαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年浙江省溫州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖是函數(shù)f(x)=Asin(ωx+φ),A>0,ω>0,0<φ<的部分圖象,M,N是它與軸的兩個(gè)交點(diǎn),D,C分別為它的最高點(diǎn)和最低點(diǎn),點(diǎn)F (0,1)是線段MD的中點(diǎn),S△CDM=
(I)求函數(shù)f(x)的解析式;
(II)在△CDM中,記∠DMN=α,∠CMN=β.證明:sinC=2cosαsinβ.

查看答案和解析>>

同步練習(xí)冊(cè)答案