已知函數(shù),x∈R(其中A>0,ω>0,)的周期為π,且圖象上一個最低點為M.
(1)求f(x)的解析式;
(2)當(dāng)x∈時,求f(x)的最大值.

存在符合題意.

解析試題分析:將原函數(shù)化簡為,令,0≤t≤1,可將問題轉(zhuǎn)化為一元二次函數(shù)中來解決,,其中0≤t≤1,對稱軸與給定的范圍進(jìn)行討論,得出最值,驗證最值是否取到1 即可.
解:,
當(dāng)0≤x≤時,0≤cos x≤1,令則0≤t≤1,
,0≤t≤1.
當(dāng),即0≤a≤2時,則當(dāng),即時.
,解得或a=-4(舍去).
當(dāng),即a<0時,則當(dāng)t=0,即時,
,解得 (舍去).
當(dāng),即a>2時,則當(dāng)t=1,即時,
,解得 (舍去).
綜上知,存在符合題意.
考點:同角三角函數(shù)的基本關(guān)系式,二次函數(shù)求最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的值;
(2)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),.
(1)若,求的最大值及相應(yīng)的的取值集合;
(2)若的一個零點,且,求的值和的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知α∈,.
(1) 求值; (2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)直線圖像的任意兩條對稱軸,且的最小值為
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若的值;
(3)若關(guān)于的方程有實數(shù)解,求實數(shù)的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值;
(3)若,求使取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知扇形的周長為30,當(dāng)它的半徑R和圓心角各取何值時,扇形的面積S最大?并求出扇形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013·佛山模擬)在平面直角坐標(biāo)系xOy中,以O(shè)x為始邊,角α的終邊與單位圓O的交點B在第一象限,已知A(-1,3).
(1)若OA⊥OB,求tan α的值;
(2)若B點橫坐標(biāo)為,求SAOB

查看答案和解析>>

同步練習(xí)冊答案