已知函數(shù)f(x)=cosx,x∈(0,2π)有兩個不同的零點x1,x2,且方程f(x)=m(m≠0)有兩個不同的實根x3,x4,若把這四個數(shù)按從小到大排列構成等差數(shù)列,則實數(shù)m=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2
考點:余弦函數(shù)的圖象
專題:計算題,函數(shù)的性質(zhì)及應用
分析:由題意可知:x1=
π
2
,x2=
2
,且x3、x4只能分布在x1、x2的中間或兩側,下面分別求解并驗證即可的答案.
解答: 解:由題意可知:x1=
π
2
,x2=
2
,且x3、x4只能分布在x1、x2的中間或兩側,
若x3、x4只能分布在x1、x2的中間,則公差d=
2
-
π
2
3
=
π
3
,
故x3、x4分別為
6
、
6
,此時可求得m=cos
6
=-
3
2

若x3、x4只能分布在x1、x2的兩側,則公差d=
2
=π,
故x3、x4分別為-
π
2
、
2
,不合題意.
故選:D.
點評:本題為等差數(shù)列的構成問題,涉及分類討論的思想和函數(shù)的零點以及三角函數(shù),屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

解方程組:
2x-(1-a2)y-2-2a2=0
ax-2y-2a+4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

惠州市某縣區(qū)共有甲、乙、丙三所高中的高三文科學生共有800人,各學校男、女生人數(shù)如表:
甲高中乙高中丙高中
女生153xy
男生9790z
已知在三所高中的所有高三文科學生中隨機抽取1人,抽到乙高中女生的概率為0.2.
(1)求表中x的值;
(2)惠州市第三次調(diào)研考試后,該縣區(qū)決定從三所高中的所有高三文科學生中利用隨機數(shù)表法抽取100人進行成績統(tǒng)計分析,先將800人按001,002,…,800進行編號.如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢測的3個人的編號;
(下面摘取了隨機數(shù)表中第7行至第9行)
84421753315724550688770474476721763350268392
63015316591692753862982150717512867358074439
13263321134278641607825207443815032442997931
(3)已知y≥145,z≥145,求丙高中學校中的女生比男生人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在圓C中,若
AB
AC
=1,則弦AB的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求1.02δ的近似值(精確到小數(shù)點后三位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A,B,C是平面內(nèi)不共線的三點,點P在該平面內(nèi)且有
PA
+2
PB
=
0
,現(xiàn)將一粒黃豆隨機撒在△ABC內(nèi),則這粒黃豆落在△PBC內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)記f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C滿足條件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)把f(x)的圖象向左平移
π
12
個單位,得到的圖象對應的函數(shù)為g(x),求函數(shù)g(x)在[0,
π
4
]的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的前n項和Sn滿足:Sn=2an+1(n∈N*).
(1)求數(shù)列{an}的前三項和a1,a2,a3;
(2)求{an-1}的通項公式,并求出an的通項公式.

查看答案和解析>>

同步練習冊答案