如果方程表示焦點(diǎn)在軸上的橢圓,則的取值范圍是  (  )
A.B.C.D.
D

試題分析:由題意可得:方程表示焦點(diǎn)在y軸上的橢圓,所以4-m>0,m-3>0并且m-3>4-m,解得:<m<4.故選D.
點(diǎn)評(píng):解決該試題的關(guān)鍵是理解橢圓的焦點(diǎn)位置取決于分母中那個(gè)大,則對(duì)應(yīng)的焦點(diǎn)位置在那個(gè)軸上來得到。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,離心率.過的直線交橢圓于兩點(diǎn),且△的周長為

(Ⅰ)求橢圓的方程.
(Ⅱ)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與橢圓交于兩點(diǎn),已知,,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點(diǎn),離心率,且它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合, 則此橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
橢圓:的左、右頂點(diǎn)分別、,橢圓過點(diǎn)且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于、兩點(diǎn)的任意一點(diǎn)軸,為垂足,延長到點(diǎn),且,過點(diǎn)作直線軸,連結(jié)并延長交直線于點(diǎn),線段的中點(diǎn)記為點(diǎn).
①求點(diǎn)所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左焦點(diǎn)為, 點(diǎn)在橢圓上, 如果線段的中點(diǎn)軸的
正半軸上, 那么點(diǎn)的坐標(biāo)是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)平面內(nèi),已知點(diǎn),動(dòng)點(diǎn)滿足條件:,則點(diǎn)的軌跡方程是(    ).
A.B.C.()D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,左右焦點(diǎn)分別為,
(1)若上一點(diǎn)滿足,求的面積;
(2)直線于點(diǎn),線段的中點(diǎn)為,求直線的方程。

查看答案和解析>>

同步練習(xí)冊答案