設(shè)F為拋物線C:y2=4x的焦點(diǎn),過(guò)F的直線交拋物線C于A、B兩點(diǎn),其中點(diǎn)A在x軸的下方,且滿足
AF
=4
FB
,則直線AB的方程為(  )
分析:設(shè)出A,B的坐標(biāo),利用
AF
=4
FB
,求出A,B的坐標(biāo),再利用斜率公式求出直線AB的斜率,從而可求直線AB的方程.
解答:解:設(shè)A(x,y),B(m,n),y<0,n>0,則
∵F為拋物線C:y2=4x的焦點(diǎn),
∴F(1,0),
AF
=4
FB
,
∴(1-x,-y)=4(m-1,n),
∴x=5-4m,y=-4n,
∵A,B都在拋物線上
∴n2=4m,(-4n)2=4(5-4m),
∴m=
1
4
,n=1,
∴x=4,y=-4,
∴A(4,-4),B(
1
4
,1),
∴kAB=
1+4
1
4
-4
=-
4
3
,
∴直線AB的方程為y+4=-
4
3
(x-4),即4x+3y-4=0.
故選B.
點(diǎn)評(píng):本題考查拋物線的方程,考查向量知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌二模)設(shè)F為拋物線C:y2=2px(p>0)的焦點(diǎn),過(guò)F且與拋物線C對(duì)稱軸垂直的直線被拋物線C截得線段長(zhǎng)為4.
(1)求拋物線C方程.
(2)設(shè)A、B為拋物線C上異于原點(diǎn)的兩點(diǎn)且滿足FA⊥FB,延長(zhǎng)AF、BF分別拋物線C于點(diǎn)C、D.求:四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F為拋物線C:y2=4x的焦點(diǎn),過(guò)點(diǎn)P(-1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)設(shè)F為拋物線C:y2=4x的焦點(diǎn),過(guò)點(diǎn)P(-1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于
不存在
不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F為拋物線C:y2=4x的焦點(diǎn),過(guò)點(diǎn)F(−1,0)的直線l交拋物線C于A,B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn).若|FQ|=2,則直線l的斜率等于       

查看答案和解析>>

同步練習(xí)冊(cè)答案