(08年溫州市適應(yīng)性測(cè)試二文)(14分)一個(gè)袋子裝有兩個(gè)紅球、兩個(gè)白球,從袋子中任取兩個(gè)球放入一箱子里.

(I)求箱子中至少有一個(gè)紅球的概率;

      (II)“從箱子里任取一個(gè)球,看看是紅的還是白的,然后放回”,這樣從箱子中反復(fù)取球兩次.求兩次看到的都是紅球的概率.

解析:(I)記“箱子中至少有一個(gè)紅球”為事件,

………………………………6分

(II) 箱子中的兩球可能是:①兩紅:兩紅的概率為

                               ②一紅一白:一紅一白的概率為

                               ③兩白:兩白的概率為

記“從箱子中反復(fù)取球兩次,兩次看到的都是紅球”為事件

……………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年溫州市適應(yīng)性測(cè)試二文)(14分)如圖,點(diǎn)是點(diǎn)在平面上的射影, 

是正三角形,

(I)證明:四邊形是正方形;

(II)求與平面所成角的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年溫州市適應(yīng)性測(cè)試二文)(15分)已知函數(shù)處取到極值,其中

(I)若,求的值;

(II)若,證明:過原點(diǎn)且與曲線相切的兩條直線不垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年溫州市適應(yīng)性測(cè)試二理) (15分)已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)對(duì)于給定的閉區(qū)間,試證明在(0,1)上必存在實(shí)數(shù),使時(shí),

上是增函數(shù);

(3)當(dāng)時(shí),記,若對(duì)于任意的總存在

時(shí),使得成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年溫州市適應(yīng)性測(cè)試二理)  (15分)已知數(shù)列{}的前項(xiàng)的和為,對(duì)一切正整數(shù)都有

(1)求證:是等差數(shù)列;并求數(shù)列{}的通項(xiàng)公式;

(2)當(dāng),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年溫州市適應(yīng)性測(cè)試二理) (14分)一個(gè)袋子裝有兩個(gè)紅球、兩個(gè)白球,從袋子中任取兩個(gè)球放入一箱子里,記 為箱子中紅球的個(gè)數(shù).再“從箱子里任取一個(gè)球,看看是紅的還是白的,然后放回”,這樣從箱子中反復(fù)取球兩次.設(shè)表示紅球被取出的次數(shù).

(1)求=1的概率

(2)求的分布列與期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案