將如圖所示的三角形數(shù)陣中所有的數(shù)按從上至下、從左至右的順序排列成數(shù)列a11,a21,a22,a31,a32,….若所得數(shù)列構(gòu)成一個(gè)等差數(shù)列,且a11=2,a33=12,則
①數(shù)陣中的數(shù)aii可用i表示為 ;
②若amn+a(m+1)(n+1)=a(m+2)(n+2),則m+n的值為 .
考點(diǎn):
等差數(shù)列的性質(zhì).
專題:
等差數(shù)列與等比數(shù)列.
分析:
①不妨設(shè)等差數(shù)列a11,a21,a22,a31,a32,…為{bn},則由a11=2,a33=12可得b1=2,公差d=2,故bn=2n.而 aii可為等差數(shù)列{bn}中的第1+2+3+…+i= 個(gè),由此可得 aii 的值.
②先求出amn=m2﹣m+2n.再由已知的等式化簡(jiǎn)可得 m2﹣3m﹣4+2n=0,由于n>0,可得m2﹣3m﹣4<0,解得m的范圍,結(jié)合 m≥n>0,可得m和n的值,從而求得 m+n的值.
解答:
解:①不妨設(shè)等差數(shù)列a11,a21,a22,a31,a32,…為{bn},則由a11=2,a33=12可得b1=2,公差d=2.
故bn=2n.
而 aii可為等差數(shù)列{bn}中的第1+2+3+…+i= 個(gè),∴aii =2×=i(i+1)=i2+i,
故答案為 i2+i.
②由題意可得,amn=b1+2+3+…+(m﹣1)+n=2[1+2+3+…+(m﹣1)+n]=m2﹣m+2n.
∴a(m+1)(n+1)=(m+1)2﹣(m+1)+2(n+1),a(m+2)(n+2)=(m+2)2﹣(m+2)+2(n+2).
再由 amn+a(m+1)(n+1)=a(m+2)(n+2),
可得 m2﹣m+2n+(m+1)2﹣(m+1)+2(n+1)=(m+2)2﹣(m+2)+2(n+2),
化簡(jiǎn)可得 m2﹣3m﹣4+2n=0,由于n>0,∴m2﹣3m﹣4<0,解得﹣1<m<4,
∴m=1,2,3,再由 m≥n>0,可得,∴m+n=5,
故答案為 5.
點(diǎn)評(píng):
本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,一元二次不等式的解法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市海淀區(qū)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com